
CHAPTER 2

Java

Fundamentals

Copyright © 2016 Pearson Education, Inc., Hoboken NJ

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-2

Chapter Topics

Chapter 2 discusses the following main topics:

– The Parts of a Java Program

– The print and println Methods, and the Java

API

– Variables and Literals

– Primitive Data Types

– Arithmetic Operators

– Combined Assignment Operators

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-3

Chapter Topics (2)

– Creating named constants with final

– The String class

– Scope

– Comments

– Programming style

– Using the Scanner class for input

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-4

Parts of a Java Program

• A Java source code file contains one or more

Java classes.

• If more than one class is in a source code file,

only one of them may be public.

• The public class and the filename of the

source code file must match.
ex: A class named Simple must be in a file named Simple.java

• Each Java class can be separated into parts.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-5

Parts of a Java Program

• See example: Simple.java

• To compile the example:

– javac Simple.java

• Notice the .java file extension is needed.

• This will result in a file named Simple.class being created.

• To run the example:

– java Simple

• Notice there is no file extension here.

• The java command assumes the extension is .class.

Simple.java

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-6

public class Simple

{

}

This area is the body of the class Simple.

All of the data and methods for this class

will be between these curly braces.

Analyzing The Example

// This is a simple Java program.
This is a Java comment. It is

ignored by the compiler.

This is the class header

for the class Simple

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-7

Analyzing The Example

// This is a simple Java program.

public class Simple

{

}

public static void main(String[] args)

{

}

This area is the body of the main method.

All of the actions to be completed during

the main method will be between these curly braces.

This is the method header

for the main method. The

main method is where a Java

application begins.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-8

Analyzing The Example

// This is a simple Java program.

public class Simple

{

}

public static void main(String [] args)

{

System.out.println("Programming is great fun!");

}

This is the Java Statement that

is executed when the program runs.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-9

Parts of a Java Program

• Comments

– The line is ignored by the compiler.

– The comment in the example is a single-line comment.

• Class Header

– The class header tells the compiler things about the class
such as what other classes can use it (public) and that it is a
Java class (class), and the name of that class (Simple).

• Curly Braces

– When associated with the class header, they define the scope
of the class.

– When associated with a method, they define the scope of the
method.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-10

Parts of a Java Program

• The main Method

– This line must be exactly as shown in the example (except

the args variable name can be programmer defined).

– This is the line of code that the java command will run first.

– This method starts the Java program.

– Every Java application must have a main method.

• Java Statements

– When the program runs, the statements within the main

method will be executed.

– Can you see what the line in the example will do?

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-11

Java Statements

• If we look back at the previous example, we

can see that there is only one line that ends

with a semi-colon.
System.out.println("Programming is great fun!");

• This is because it is the only Java statement in

the program.

• The rest of the code is either a comment or

other Java framework code.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-12

Java Statements

• Comments are ignored by the Java compiler so they

need no semi-colons.

• Other Java code elements that do not need semi colons

include:

– class headers

• Terminated by the code within its curly braces.

– method headers

• Terminated by the code within its curly braces.

– curly braces

• Part of framework code that needs no semi-colon termination.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-13

Short Review

• Java is a case-sensitive language.

• All Java programs must be stored in a file with

a .java file extension.

• Comments are ignored by the compiler.

• A .java file may contain many classes but may

only have one public class.

• If a .java file has a public class, the class must

have the same name as the file.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-14

Short Review

• Java applications must have a main method.

• For every left brace, or opening brace, there

must be a corresponding right brace, or closing

brace.

• Statements are terminated with semicolons.

– Comments, class headers, method headers, and

braces are not considered Java statements.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-15

Special Characters

// double slash
Marks the beginning of a single line

comment.

() open and close parenthesis
Used in a method header to mark the

parameter list.

{ } open and close curly braces
Encloses a group of statements, such

as the contents of a class or a method.

“ ” quotation marks

Encloses a string of characters, such

as a message that is to be printed on

the screen

; semi-colon
Marks the end of a complete

programming statement

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-16

Console Output

• Many of the programs that you will write will

run in a console window.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-17

Console Output

• The console window that starts a Java

application is typically known as the standard

output device.

• The standard input device is typically the

keyboard.

• Java sends information to the standard output

device by using a Java class stored in the

standard Java library.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-18

Console Output

• Java classes in the standard Java library are

accessed using the Java Applications

Programming Interface (API).

• The standard Java library is commonly

referred to as the Java API.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-19

Console Output

• The previous example uses the line:
System.out.println("Programming is great fun!");

• This line uses the System class from the

standard Java library.

• The System class contains methods and

objects that perform system level tasks.

• The out object, a member of the System

class, contains the methods print and

println.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-20

Console Output

• The print and println methods actually

perform the task of sending characters to the

output device.

• The line:
System.out.println("Programming is great fun!");

is pronounced: System dot out dot println …

• The value inside the parenthesis will be sent

to the output device (in this case, a string).

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-21

Console Output

• The println method places a newline

character at the end of whatever is being

printed out.

• The following lines:
System.out.println("This is being printed out");

System.out.println("on two separate lines.");

Would be printed out on separate lines since the first

statement sends a newline command to the screen.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-22

Console Output

• The print statement works very similarly to the

println statement.

• However, the print statement does not put a

newline character at the end of the output.

• The lines:
System.out.print("These lines will be");

System.out.print("printed on");

System.out.println("the same line.");

Will output:
These lines will beprinted onthe same line.

Notice the odd spacing? Why are some words run together?

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-23

Console Output

• For all of the previous examples, we have been printing

out strings of characters.

• Later, we will see that much more can be printed.

• There are some special characters that can be put into

the output.
System.out.print("This line will have a newline at the end.\n");

• The \n in the string is an escape sequence that

represents the newline character.

• Escape sequences allow the programmer to print

characters that otherwise would be unprintable.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-24

Java Escape Sequences

\n newline Advances the cursor to the next line for subsequent printing

\t tab Causes the cursor to skip over to the next tab stop

\b backspace Causes the cursor to back up, or move left, one position

\r carriage return
Causes the cursor to go to the beginning of the current line, not

the next line

\\ backslash Causes a backslash to be printed

\’ single quote Causes a single quotation mark to be printed

\” double quote Causes a double quotation mark to be printed

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-25

Java Escape Sequences

• Even though the escape sequences are comprised of
two characters, they are treated by the compiler as a
single character.

System.out.print("These are our top sellers:\n");

System.out.print("\tComputer games\n\tCoffee\n ");

System.out.println("\tAspirin");

Would result in the following output:
These are our top seller:

Computer games

Coffee

Asprin

• With these escape sequences, complex text output can
be achieved.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-26

Variables and Literals

• A variable is a named storage location in the

computer’s memory.

• A literal is a value that is written into the code

of a program.

• Programmers determine the number and type of

variables a program will need.

• See example:Variable.java

Variable.java

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-27

Variables and Literals

This line is called

a variable declaration.
int value;

The following line is known

as an assignment statement.
value = 5;

System.out.print("The value is ");

System.out.println(value);

This is a string literal. It will be printed as is.

The integer 5 will

be printed out here.

Notice no quote marks?

0x000

0x001

0x002

0x003

5

The value 5

is stored in

memory.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-28

The + Operator

• The + operator can be used in two ways.

– as a concatenation operator

– as an addition operator

• If either side of the + operator is a string,
the result will be a string.

System.out.println("Hello " + "World");

System.out.println("The value is: " + 5);

System.out.println("The value is: " + value);

System.out.println("The value is: " + ‘/n’ + 5);

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-29

String Concatenation

• Java commands that have string literals must be

treated with care.

• A string literal value cannot span lines in a Java

source code file.
System.out.println("This line is too long and now it

has spanned more than one line, which will cause a

syntax error to be generated by the compiler. ");

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-30

String Concatenation

• The String concatenation operator can be used

to fix this problem.
System.out.println("These lines are " +

"are now ok and will not " +

"cause the error as before.");

• String concatenation can join various data

types.
System.out.println("We can join a string to " +

"a number like this: " + 5);

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-31

String Concatenation

• The Concatenation operator can be used to

format complex String objects.
System.out.println("The following will be printed " +

"in a tabbed format: " +

\n\tFirst = " + 5 * 6 + ", " +

"\n\tSecond = " (6 + 4) + "," +

"\n\tThird = " + 16.7 + ".");

• Notice that if an addition operation is also

needed, it must be put in parenthesis.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-32

Identifiers

• Identifiers are programmer-defined names for:

– classes

– variables

– methods

• Identifiers may not be any of the Java reserved

keywords.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-33

Identifiers

• Identifiers must follow certain rules:

– An identifier may only contain:

• letters a–z or A–Z,

• the digits 0–9,

• underscores (_), or

• the dollar sign ($)

– The first character may not be a digit.

– Identifiers are case sensitive.

• itemsOrdered is not the same as itemsordered.

– Identifiers cannot include spaces.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-34

Java Reserved Keywords

abstract

assert

boolean

break

byte

case

catch

char

class

const

continue

default

do

double

else

enum

extends

false

for

final

finally

float

goto

if

implements

import

instanceof

int

interface

long

native

new

null

package

private

protected

public

return

short

static

strictfp

super

switch

synchronized

this

throw

throws

transient

true

try

void

volatile

while

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-35

Variable Names

• Variable names should be descriptive.

• Descriptive names allow the code to be more

readable; therefore, the code is more

maintainable.

• Which of the following is more descriptive?
double tr = 0.0725;

double salesTaxRate = 0.0725;

• Java programs should be self-documenting.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-36

Java Naming Conventions

• Variable names should begin with a lower case letter

and then switch to title case thereafter:
Ex: int caTaxRate

• Class names should be all title case.
Ex: public class BigLittle

• More Java naming conventions can be found at:
http://java.sun.com/docs/codeconv/html/CodeConventions.doc8.html

• A general rule of thumb about naming variables and

classes are that, with some exceptions, their names

tend to be nouns or noun phrases.

http://java.sun.com/docs/codeconv/html/CodeConventions.doc8.html

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-37

Primitive Data Types

– byte

– short

– int

– long

– float

– double

– boolean

– char

• Primitive data types are built into the Java language
and are not derived from classes.

• There are 8 Java primitive data types.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-38

Numeric Data Types
byte 1 byte Integers in the range

-128 to +127

short 2 bytes Integers in the range of

-32,768 to +32,767

int 4 bytes Integers in the range of

-2,147,483,648 to +2,147,483,647

long 8 bytes Integers in the range of

-9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

float 4 bytes Floating-point numbers in the range of

±3.410-38 to ±3.41038, with 7 digits of accuracy

double 8 bytes Floating-point numbers in the range of

±1.710-308 to ±1.710308, with 15 digits of accuracy

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-39

Variable Declarations

• Variable Declarations take the following form:

– DataType VariableName;

•byte inches;

•short month;

•int speed;

•long timeStamp;

•float salesCommission;

•double distance;

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-40

Integer Data Types

• byte, short, int, and long are all integer
data types.

• They can hold whole numbers such as 5, 10, 23,
89, etc.

• Integer data types cannot hold numbers that
have a decimal point in them.

• Integers embedded into Java source code are
called integer literals.

• See Example: IntegerVariables.java

IntegerVariables.java

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-41

Floating Point Data Types

• Data types that allow fractional values are

called floating-point numbers.

– 1.7 and -45.316 are floating-point numbers.

• In Java there are two data types that can

represent floating-point numbers.

– float - also called single precision (7 decimal

points).

– double - also called double precision (15 decimal

points).

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-42

Floating Point Literals

• When floating point numbers are embedded

into Java source code they are called floating

point literals.

• The default type for floating point literals is
double.

– 29.75, 1.76, and 31.51 are double data types.

• Java is a strongly-typed language.

• See example: Sale.java

Sale.java

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-43

Floating Point Literals

• A double value is not compatible with a
float variable because of its size and
precision.
– float number;

– number = 23.5; // Error!

• A double can be forced into a float by
appending the letter F or f to the literal.
– float number;

– number = 23.5F; // This will work.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-44

Floating Point Literals

• Literals cannot contain embedded currency symbols or
commas.
– grossPay = $1,257.00; // ERROR!

– grossPay = 1257.00; // Correct.

• Floating-point literals can be represented in scientific
notation.

– 47,281.97 == 4.728197 x 104.

• Java uses E notation to represent values in scientific
notation.

– 4.728197X104 == 4.728197E4.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-45

Scientific and E Notation

Decimal Notation Scientific Notation E Notation

247.91 2.4791 x 102 2.4791E2

0.00072 7.2 x 10-4 7.2E-4

2,900,000 2.9 x 106 2.9E6

See example: SunFacts.java

SunFacts.java

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-46

The boolean Data Type

• The Java boolean data type can have two

possible values.

– true

– false

• The value of a boolean variable may only be

copied into a boolean variable.

See example: TrueFalse.java

TrueFalse.java

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-47

The char Data Type

• The Java char data type provides access to single

characters.

• char literals are enclosed in single quote marks.

– ‘a’, ‘Z’, ‘\n’, ‘1’

• Don’t confuse char literals with string literals.

– char literals are enclosed in single quotes.

– String literals are enclosed in double quotes.

See example: Letters.java

Letters.java

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-48

Unicode

• Internally, characters are stored as numbers.

• Character data in Java is stored as Unicode

characters.

• The Unicode character set can consist of 65536

(216) individual characters.

• This means that each character takes up 2 bytes in

memory.

• The first 256 characters in the Unicode character

set are compatible with the ASCII* character set.

See example: Letters2.java
*American Standard Code for Information Interchange

Letters2.java

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-49

Unicode

A

00 65

B

00 66

0 0 0 0 0 0 0 0 0 1 0 0 0 0 10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 11

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-50

Unicode

A

00 65

B

00 66

0 0 0 0 0 0 0 0 0 1 0 0 0 0 10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 11

Characters are

stored in memory

as binary numbers.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-51

Unicode

A

00 65

B

00 66

0 0 0 0 0 0 0 0 0 1 0 0 0 0 10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 11

The binary numbers

represent these

decimal values.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-52

Unicode

A

00 65

B

00 66

0 0 0 0 0 0 0 0 0 1 0 0 0 0 10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 11

The decimal values

represent these

characters.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-53

Variable Assignment and Initialization

• In order to store a value in a variable, an

assignment statement must be used.

• The assignment operator is the equal (=) sign.

• The operand on the left side of the assignment

operator must be a variable name.

• The operand on the right side must be either a

literal or expression that evaluates to a type that

is compatible with the type of the variable.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-54

Variable Assignment and Initialization

// This program shows variable assignment.

public class Initialize
{
public static void main(String[] args)
{
int month, days;

month = 2;
days = 28;
System.out.println("Month " + month + " has " +

days + " Days.");
}

}

The variables must be declared before they can be used.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-55

Variable Assignment and Initialization

// This program shows variable assignment.

public class Initialize
{
public static void main(String[] args)
{
int month, days;

month = 2;
days = 28;
System.out.println("Month " + month + " has " +

days + " Days.");
}

}

Once declared, they can then receive a value (initialization);

however the value must be compatible with the variable’s

declared type.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-56

Variable Assignment and Initialization

// This program shows variable assignment.

public class Initialize
{
public static void main(String[] args)
{
int month, days;

month = 2;
days = 28;
System.out.println("Month " + month + " has " +

days + " Days.");
}

}

After receiving a value, the variables can then be used in

output statements or in other calculations.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-57

Variable Assignment and Initialization

// This program shows variable initialization.

public class Initialize

{

public static void main(String[] args)

{

int month = 2, days = 28;

System.out.println("Month " + month + " has " +

days + " Days.");

}

}

Local variables can be declared and initialized on

the same line.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-58

Variable Assignment and Initialization

• Variables can only hold one value at a time.

• Local variables do not receive a default value.

• Local variables must have a valid type in order to be

used.
public static void main(String [] args)

{

int month, days; //No value given…

System.out.println("Month " + month + " has " +

days + " Days.");

}

Trying to use uninitialized variables will generate a Syntax

Error when the code is compiled.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-59

Arithmetic Operators

• Java has five (5) arithmetic operators.

Operator Meaning Type Example

+ Addition Binary total = cost + tax;

- Subtraction Binary cost = total – tax;

* Multiplication Binary tax = cost * rate;

/ Division Binary salePrice = original / 2;

% Modulus Binary remainder = value % 5;

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-60

Arithmetic Operators

• The operators are called binary operators because they

must have two operands.

• Each operator must have a left and right operator.

See example: Wages.java

• The arithmetic operators work as one would expect.

• It is an error to try to divide any number by zero.

• When working with two integer operands, the division

operator requires special attention.

Wages.java

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-61

Integer Division

• Division can be tricky.

In a Java program, what is the value of 1/2?

• You might think the answer is 0.5…

• But, that’s wrong.

• The answer is simply 0.

• Integer division will truncate any decimal

remainder.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-62

Operator Precedence

• Mathematical expressions can be very complex.

• There is a set order in which arithmetic

operations will be carried out.

Operator Associativity Example Result

-

(unary negation)
Right to left x = -4 + 3; -1

* / % Left to right x = -4 + 4 % 3 * 13 + 2; 11

+ - Left to right x = 6 + 3 – 4 + 6 * 3; 23

Higher

Priority

Lower

Priority

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-63

Grouping with Parenthesis

• When parenthesis are used in an expression, the inner

most parenthesis are processed first.

• If two sets of parenthesis are at the same level, they are

processed left to right.

• x = ((4*5) / (5-2)) – 25; // result = -19

1

3

4

2

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-64

Combined Assignment Operators

• Java has some combined assignment operators.

• These operators allow the programmer to

perform an arithmetic operation and assignment

with a single operator.

• Although not required, these operators are

popular since they shorten simple equations.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-65

Combined Assignment Operators

Operator Example Equivalent Value of variable after operation

+= x += 5; x = x + 5; The old value of x plus 5.

-= y -= 2; y = y – 2; The old value of y minus 2

*= z *= 10; z = z * 10; The old value of z times 10

/= a /= b; a = a / b; The old value of a divided by b.

%= c %= 3; c = c % 3;
The remainder of the division of

the old value of c divided by 3.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-66

Creating Constants

• Many programs have data that does not need to be
changed.

• Littering programs with literal values can make the
program hard do read and maintain.

• Replacing literal values with constants remedies this
problem.

• Constants allow the programmer to use a name rather
than a value throughout the program.

• Constants also give a singular point for changing those
values when needed.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-67

Creating Constants

• Constants keep the program organized and easier to

maintain.

• Constants are identifiers that can hold only a single

value.

• Constants are declared using the keyword final.

• Constants need not be initialized when declared;

however, they must be initialized before they are used

or a compiler error will be generated.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-68

Creating Constants

• Once initialized with a value, constants cannot

be changed programmatically.

• By convention, constants are all upper case and

words are separated by the underscore

character.

final int CAL_SALES_TAX = 0.725;

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-69

The String Class

• Java has no primitive data type that holds a series of
characters.

• The String class from the Java standard library is
used for this purpose.

• In order to be useful, the a variable must be created to
reference a String object.

String number;

• Notice the S in String is upper case.

• By convention, class names should always begin with
an upper case character.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-70

Primitive vs. Reference Variables

• Primitive variables actually contain the value
that they have been assigned.
number = 25;

• The value 25 will be stored in the memory
location associated with the variable number.

• Objects are not stored in variables, however.
Objects are referenced by variables.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-71

Primitive vs. Reference Variables

• When a variable references an object, it contains the

memory address of the object’s location.

• Then it is said that the variable references the object.

String cityName = "Charleston";

CharlestonAddress to the objectcityName

The object that contains the

character string “Charleston”

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-72

String Objects

• A variable can be assigned a String literal.

String value = "Hello";

• Strings are the only objects that can be created in

this way.

• A variable can be created using the new keyword.

String value = new String("Hello");

• This is the method that all other objects must use when

they are created.

See example: StringDemo.java

StringDemo.java

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-73

The String Methods

• Since String is a class, objects that are

instances of it have methods.

• One of those methods is the length method.

stringSize = value.length();

• This statement runs the length method on the

object pointed to by the value variable.

See example: StringLength.java

StringLength.java

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-74

String Methods

• The String class contains many methods that

help with the manipulation of String objects.

• String objects are immutable, meaning that

they cannot be changed.

• Many of the methods of a String object can

create new versions of the object.

See example: StringMethods.java

PayrollDialog.java

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-75

Scope

• Scope refers to the part of a program that has
access to a variable’s contents.

• Variables declared inside a method (like the
main method) are called local variables.

• Local variables’ scope begins at the declaration
of the variable and ends at the end of the
method in which it was declared.

See example: Scope.java (This program contains
an intentional error.)

Scope.java

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-76

Commenting Code

• Java provides three methods for commenting
code.

Comment

Style
Description

//
Single line comment. Anything after the // on the line will be

ignored by the compiler.

/* … */

Block comment. Everything beginning with /* and ending with

the first */ will be ignored by the compiler. This comment type

cannot be nested.

/** … */

Javadoc comment. This is a special version of the previous block

comment that allows comments to be documented by the javadoc

utility program. Everything beginning with the /** and ending

with the first */ will be ignored by the compiler. This comment

type cannot be nested.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-79

Programming Style

• Although Java has a strict syntax, whitespace
characters are ignored by the compiler.

• The Java whitespace characters are:

– space

– tab

– newline

– carriage return

– form feed

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-80

Indentation

• Programs should use proper indentation.

• Each block of code should be indented a few spaces

from its surrounding block.

• Two to four spaces are sufficient.

• Tab characters should be avoided.

– Tabs can vary in size between applications and devices.

– Most programming text editors allow the user to replace the

tab with spaces.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-81

The Scanner Class

• To read input from the keyboard we can use the

Scanner class.

• The Scanner class is defined in java.util, so we

will use the following statement at the top of our

programs:

import java.util.Scanner;

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-82

The Scanner Class

• Scanner objects work with System.in

• To create a Scanner object:
Scanner keyboard = new Scanner (System.in);

• Scanner class methods are listed in Table 2-

18 in the text.

• See example: Payroll.java

StringMethods.java

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-92

The Parse Methods

• Each of the numeric wrapper classes, (covered in

Chapter 10) has a method that converts a string to a

number.

– The Integer class has a method that converts a string to

an int,

– The Double class has a method that converts a string to a

double, and

– etc.

• These methods are known as parse methods because

their names begin with the word “parse.”

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2-93

The Parse Methods

// Store 1 in bVar.

byte bVar = Byte.parseByte("1");

// Store 2599 in iVar.

int iVar = Integer.parseInt("2599");

// Store 10 in sVar.

short sVar = Short.parseShort("10");

// Store 15908 in lVar.

long lVar = Long.parseLong("15908");

// Store 12.3 in fVar.

float fVar = Float.parseFloat("12.3");

// Store 7945.6 in dVar.

double dVar = Double.parseDouble("7945.6");

