
Starting Out with Java: From Control 
Structures Through Objects
Sixth Edition

Chapter 10
Inheritance

Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Chapter Topics (1 of 2)

10.1 What Is Inheritance?

10.2 Calling the Superclass Constructor

10.3 Overriding Superclass Methods

10.4 Protected Members

10.5 Chains of Inheritance

10.6 The Object Class



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Chapter Topics (2 of 2)

10.7 Polymorphism

10.8 Abstract Classes and Abstract Methods

10.9 Interfaces

10.10 Anonymous Classes

10.11 Functional Interfaces and Lambda Expressions



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

10.1 What is Inheritance?

Generalization versus Specialization

• Real-life objects are typically specialized versions of other more 
general objects.

• The term “insect” describes a very general type of creature with 
numerous characteristics.

• Grasshoppers and bumblebees are insects
– They share the general characteristics of an insect.
– However, they have special characteristics of their own.

▪ grasshoppers have a jumping ability, and
▪ bumblebees have a stinger.

• Grasshoppers and bumblebees are specialized versions of an insect.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Inheritance (1 of 2)



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

The “is a” Relationship (1 of 2)

• The relationship between a superclass and an inherited class 
is called an “is a” relationship.

– A grasshopper “is a” insect.
– A poodle “is a” dog.
– A car “is a” vehicle.

• A specialized object has:
– all of the characteristics of the general object, plus
– additional characteristics that make it special.

• In object-oriented programming, inheritance is used to create 
an “is a” relationship among classes.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

The “is a” Relationship (2 of 2)

• We can extend the capabilities of a class.

• Inheritance involves a superclass and a subclass.
– The superclass is the general class and
– the subclass is the specialized class.

• The subclass is based on, or extended from, the superclass.
– Superclasses are also called base classes, and
– subclasses are also called derived classes.

• The relationship of classes can be thought of as parent 
classes and child classes.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Inheritance (2 of 2)

• The subclass inherits fields and methods from the superclass 
without any of them being rewritten.

• New fields and methods may be added to the subclass.

• The Java keyword, extends, is used on the class header to 
define the subclass.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

The GradedActivity Example (1 of 2)



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

The GradedActivity Example (2 of 2)

• Example:
– GradedActivity.java,
– GradeDemo.java,
– FinalExam.java,
– FinalExamDemo.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Inheritance, Fields and Methods (1 of 2)

• Members of the superclass that are marked private:
– are not inherited by the subclass,
– exist in memory when the object of the subclass is 

created
– may only be accessed from the subclass by public 

methods of the superclass.

• Members of the superclass that are marked public:
– are inherited by the subclass, and
– may be directly accessed from the subclass.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Inheritance, Fields and Methods (2 of 2)

• When an instance of the subclass is created, the non-
private methods of the superclass are available through 
the subclass object.

• Non-private methods and fields of the superclass are 
available in the subclass.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Inheritance and Constructors

• Constructors are not inherited.

• When a subclass is instantiated, the superclass default 
constructor is executed first.

• Example:
– SuperClass1.java
– SubClass1.java
– ConstructorDemo1.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

The Superclass’s Constructor

• The super keyword refers to an object’s superclass.

• The superclass constructor can be explicitly called from the 
subclass by using the super keyword.

• Example:
– SuperClass2.java, SubClass2.java, 

ConstructorDemo2.java
– Rectangle.java, Cube.java, CubeDemo.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

10.2 Calling the Superclass Constructor

• If a parameterized constructor is defined in the 
superclass,

– the superclass must provide a no-arg constructor, or
▪ subclasses must provide a constructor, and
▪ subclasses must call a superclass constructor.

• Calls to a superclass constructor must be the first java 
statement in the subclass constructors.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

10.3 Overriding Superclass Methods (1 of 5)

• A subclass may have a method with the same signature 
as a superclass method.

• The subclass method overrides the superclass method.

• This is known as method overriding.

• Example:
– GradedActivity.java, CurvedActivity.java, 

CurvedActivityDemo.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

10.3 Overriding Superclass Methods (2 of 5)



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

10.3 Overriding Superclass Methods (3 of 5)

• Recall that a method’s signature consists of:
– the method’s name
– the data types method’s parameters in the order that they 

appear.

• A subclass method that overrides a superclass method must have 
the same signature as the superclass method.

• An object of the subclass invokes the subclass’s version of the 
method, not the superclass’s.

• The @Override annotation should be used just before the subclass 
method declaration.

– This causes the compiler to display a error message if the 
method fails to correctly override a method in the superclass.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

10.3 Overriding Superclass Methods (4 of 5)

• An subclass method can call the overridden superclass method via 
the super keyword.

• There is a distinction between overloading a method and overriding a 
method.

• Overloading is when a method has the same name as one or more 
other methods, but with a different signature.

• When a method overrides another method, however, they both have 
the same signature.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

10.3 Overriding Superclass Methods (5 of 5)

• Both overloading and overriding can take place in an 
inheritance relationship.

• Overriding can only take place in an inheritance relationship.

• Example:
– SuperClass3.java,
– SubClass3.java,
– ShowValueDemo.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Preventing a Method from Being Overridden

• The final modifier will prevent the overriding of a superclass 
method in a subclass.

• If a subclass attempts to override a final method, the compiler 
generates an error.

• This ensures that a particular superclass method is used by 
subclasses rather than a modified version of it.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

10.4 Protected Members (1 of 2)

• Protected members of class:
– may be accessed by methods in a subclass, and
– by methods in the same package as the class.

• Java provides a third access specification, protected.

• A protected member’s access is somewhere between private
and public.

• Example:
– GradedActivity2.java
– FinalExam2.java
– ProtectedDemo.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

10.4 Protected Members (2 of 2)

• Using protected instead of private makes some tasks 
easier.

• However, any class that is derived from the class, or is in the 
same package, has unrestricted access to the protected 
member.

• It is always better to make all fields private and then provide 
public methods for accessing those fields.

• If no access specifier for a class member is provided, the class 
member is given package access by default.

• Any method in the same package may access the member.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Access Specifiers

Access Modifier Accessible to a subclass inside 
the same package?

Accessible to all other classes 
inside the same package?

default (no modifier) Yes Yes

Public Yes Yes

Protected Yes Yes

Private No No

Access Modifier Accessible to a subclass outside 
the package?

Accessible to all other classes 
outside the package?

default (no modifier) No No

Public Yes Yes

Protected Yes No

Private No No



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

10.5 Chains of Inheritance (1 of 2)

• A superclass can also be derived from another class.

Example:
GradedActivity.java
PassFailActivity.java
PassFailExam.java
PassFailExamDemo.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

10.5 Chains of Inheritance (2 of 2)

• Classes often are depicted graphically in a class hierarchy.

• A class hierarchy shows the inheritance relationships between 
classes.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

10.6 The Object Class (1 of 2)

• All Java classes are directly or indirectly derived from a class 
named Object.

• Object is in the java.lang package.

• Any class that does not specify the extends keyword is 
automatically derived from the Object class.

• Ultimately, every class is derived from the Object class.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

10.6 The Object Class (2 of 2)

• Because every class is directly or indirectly derived from the 
Object class:

– every class inherits the Object class’s members.
▪ example: toString and equals.

• In the Object class, the toString method returns a string 
containing the object’s class name and a hash of its memory 
address.

• The equals method accepts the address of an object as its 
argument and returns true if it is the same as the calling 
object’s address.

• Example: ObjectMethods.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

10.7 Polymorphism (1 of 4)

• A reference variable can reference objects of classes that are 
derived from the variable’s class.
GradedActivity exam;

• We can use the exam variable to reference a GradedActivity 
object.

• The GradedActivity class is also used as the superclass for the 
FinalExam class.

• An object of the FinalExam class is a GradedActivity object.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

10.7 Polymorphism (2 of 4)

• A GradedActivity variable can be used to reference a 
FinalExam object.

• This statement creates a FinalExam object and stores the object’s 
address in the exam variable.

• This is an example of polymorphism.

• The term polymorphism means the ability to take many forms.

• In Java, a reference variable is polymorphic because it can 
reference objects of types different from its own, as long as those 
types are subclasses of its type.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

10.7 Polymorphism (3 of 4)

• Other legal polymorphic references:

• The GradedActivity class has three methods: setScore, 
getScore, and getGrade.

• A GradedActivity variable can be used to call only those three 
methods.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Polymorphism and Dynamic Binding

• If the object of the subclass has overridden a method in the 
superclass:

– If the variable makes a call to that method the subclass’s version 
of the method will be run.

• Java performs dynamic binding or late binding when a variable 
contains a polymorphic reference.

• The Java Virtual Machine determines at runtime which method to 
call, depending on the type of object that the variable references.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

10.7 Polymorphism (4 of 4)

• It is the object’s type, rather than the reference type, that 
determines which method is called.

• Example:
– Polymorphic.java

• You cannot assign a superclass object to a subclass 
reference variable.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

10.8 Abstract Classes

• An abstract class cannot be instantiated, but other 
classes are derived from it.

• An Abstract class serves as a superclass for other 
classes.

• The abstract class represents the generic or abstract 
form of all the classes that are derived from it.

• A class becomes abstract when you place the abstract 
key word in the class definition.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

10.8 Abstract Methods (1 of 2)

• An abstract method has no body and must be overridden in a 
subclass.

• An abstract method is a method that appears in a superclass, 
but expects to be overridden in a subclass.

• An abstract method has only a header and no body.

• Example:
– Student.java, CompSciStudent.java, 

CompSciStudentDemo.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

10.8 Abstract Methods (2 of 2)

• Notice that the key word abstract appears in the header, 
and that the header ends with a semicolon.

• Any class that contains an abstract method is automatically 
abstract.

• If a subclass fails to override an abstract method, a compiler 
error will result.

• Abstract methods are used to ensure that a subclass 
implements the method.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

10.9 Interfaces (1 of 3)

• An interface is similar to an abstract class that has all abstract 
methods.

– It cannot be instantiated, and
– all of the methods listed in an interface must be written elsewhere.

• The purpose of an interface is to specify behavior for other classes.

• It is often said that an interface is like a “contract,” and when a class 
implements an interface it must adhere to the contract.

• An interface looks similar to a class, except:
– the keyword interface is used instead of the keyword class, 

and
– the methods that are specified in an interface have no bodies, only 

headers that are terminated by semicolons.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

10.9 Interfaces (2 of 3)

• The general format of an interface definition:

• All methods specified by an interface are public by default.

• A class can implement one or more interfaces.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

10.9 Interfaces (3 of 3)

• If a class implements an interface, it uses the implements
keyword in the class header.

• Example:
– GradedActivity.java
– Relatable.java
– FinalExam3.java
– InterfaceDemo.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Fields in Interfaces

• An interface can contain field declarations:
– all fields in an interface are treated as final and static.

• Because they automatically become final, you must provide an 
initialization value.

• In this interface, FIELD1 and FIELD2 are final static int 
variables.

• Any class that implements this interface has access to these 
variables.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Implementing Multiple Interfaces

• A class can be derived from only one superclass.

• Java allows a class to implement multiple interfaces.

• When a class implements multiple interfaces, it must provide 
the methods specified by all of them.

• To specify multiple interfaces in a class definition, simply list 
the names of the interfaces, separated by commas, after the 
implements key word.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Interfaces in UML



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Polymorphism with Interfaces (1 of 3)

• Java allows you to create reference variables of an interface 
type.

• An interface reference variable can reference any object that 
implements that interface, regardless of its class type.

• This is another example of polymorphism.

• Example:
– RetailItem.java
– CompactDisc.java
– DvdMovie.java
– PolymorphicInterfaceDemo.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Polymorphism with Interfaces (2 of 3)

• In the example code, two RetailItem reference variables, 
item1 and item2, are declared.

• The item1 variable references a CompactDisc object and 
the item2 variable references a DvdMovie object.

• When a class implements an interface, an inheritance 
relationship known as interface inheritance is established.

– a CompactDisc object is a RetailItem, and
– a DvdMovie object is a RetailItem.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Polymorphism with Interfaces (3 of 3)

• A reference to an interface can point to any class that 
implements that interface.

• You cannot create an instance of an interface.

• When an interface variable references an object:
– only the methods declared in the interface are available,
– explicit type casting is required to access the other 

methods of an object referenced by an interface reference.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Default Methods

• Beginning in Java 8, interfaces may have default methods.

• A default method is an interface method that has a body.

• You can add new methods to an existing interface without 
causing errors in the classes that already implement the 
interface.

• Example:
– Displayable.java
– Person.java
– InterfaceDemoDefaultMethod.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

10.10 Anonymous Inner Classes

• An inner class is a class that is defined inside another class.

• An anonymous inner class is an inner class that has no name.

• An anonymous inner class must implement an interface, or 
extend another class.

• Useful when you need a class that is simple, and to be 
instantiated only once in your code.

• Example:
– IntCalculator.java
– AnonymousClassDemo.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

10.11 Functional Interfaces and Lambda 
Expressions

• A functional interface is an interface that has one abstract 
method.

• A lambda expression can be used to create an object that 
implements the interface, and overrides its abstract method.

• In Java 8, these features work together to simplify code, 
particularly in situations where you might use anonymous 
inner classes.

• Example:
– LambdaDemo.java
– LambdaDemo2.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Copyright


