
Starting Out with Java: From Control 
Structures Through Objects
Sixth Edition

Chapter 11
I/O

Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

File Input and Output

• Reentering data all the time could get tedious for the user.

• The data can be saved to a file.
– Files can be input files or output files.

• Files:
– Files have to be opened.
– Data is then written to the file.
– The file must be closed prior to program termination.

• In general, there are two types of files:
– binary
– text



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Writing Text to a File

• To open a file for text output you create an instance of 
the PrintWriter class.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

The PrintWriter Class (1 of 3)

• The PrintWriter class allows you to write data to a file 
using the print and println methods, as you have 
been using to display data on the screen.

• Just as with the System.out object, the println
method of the PrintWriter class will place a newline 
character after the written data.

• The print method writes data without writing the 
newline character.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

The PrintWriter Class (2 of 3)



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

The PrintWriter Class (3 of 3)

• To use the PrintWriter class, put the following 
import statement at the top of the source file:

• See example: FileWriteDemo.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Exceptions (1 of 3)

• When something unexpected happens in a Java 
program, an exception is thrown.

• The method that is executing when the exception is 
thrown must either handle the exception or pass it up the 
line.

• Handling the exception will be discussed later.

• To pass it up the line, the method needs a throws
clause in the method header.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Exceptions (2 of 3)

• To insert a throws clause in a method header, simply 
add the word throws and the name of the expected 
exception.

• PrintWriter objects can throw an IOException, so 
we write the throws clause like this:



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Appending Text to a File

• To avoid erasing a file that already exists, create a 
FileWriter object in this manner:

• Then, create a PrintWriter object in this manner:



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Specifying a File Location (1 of 2)

• On a Windows computer, paths contain backslash (\) 
characters.

• Remember, if the backslash is used in a string literal, it is 
the escape character so you must use two of them:



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Specifying a File Location (2 of 2)

• This is only necessary if the backslash is in a string 
literal.

• If the backslash is in a String object then it will be 
handled properly.

• Fortunately, Java allows Unix style filenames using the 
forward slash (/) to separate directories:



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Reading Data From a File (1 of 3)

• You use the File class and the Scanner class to read 
data from a file:



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Reading Data From a File (2 of 3)

• The lines above:
– Creates an instance of the Scanner class to read from the 

keyboard
– Prompt the user for a filename
– Get the filename from the user
– Create an instance of the File class to represent the file
– Create an instance of the Scanner class that reads from the file



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Reading Data From a File (3 of 3)

• Once an instance of Scanner is created, data can be 
read using the same methods that you have used to read 
keyboard input (nextLine, nextInt, nextDouble, 
etc).



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Exceptions (3 of 3)

• The Scanner class can throw an IOException when 
a File object is passed to its constructor.

• So, we put a throws IOException clause in the 
header of the method that instantiates the Scanner
class.

• See Example: ReadFirstLine.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Detecting the End of a File (1 of 2)

• The Scanner class’s hasNext() method will return true 
if another item can be read from the file.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Detecting the End of a File (2 of 2)

• See example: FileReadDemo.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Binary Files (1 of 6)

• The way data is stored in memory is sometimes called 
the raw binary format.

• Data can be stored in a file in its raw binary format.

• A file that contains binary data is often called a binary 
file.

• Storing data in its binary format is more efficient than 
storing it as text.

• There are some types of data that should only be stored 
in its raw binary format.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Binary Files (2 of 6)

• Binary files cannot be opened in a text editor such as Notepad.

• To write data to a binary file you must create objects from the 
following classes:

– FileOutputStream - allows you to open a file for writing 
binary data. It provides only basic functionality for writing 
bytes to the file.

– DataOutputStream - allows you to write data of any 
primitive type or String objects to a binary file. Cannot 
directly access a file. It is used in conjunction with a 
FileOutputStream object that has a connection to a 
file.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Binary Files (3 of 6)

• A DataOutputStream object is wrapped around a 
FileOutputStream object to write data to a binary file.

• If the file that you are opening with the FileOutputStream
object already exists, it will be erased and an empty file by the 
same name will be created.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Binary Files (4 of 6)

• These statements can combined into one.

• Once the DataOutputStream object has been created, you can 
use it to write binary data to the file.

• Example: WriteBinaryFile.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Binary Files (5 of 6)

• To open a binary file for input, you wrap a DataInputStream
object around a FileInputStream object.

• These two statements can be combined into one



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Binary Files (6 of 6)

• The FileInputStream constructor will throw a 
FileNotFoundException if the file named by the string 
argument cannot be found.

• Once the DataInputStream object has been created, you 
can use it to read binary data from the file.

• Example:
– ReadBinaryFile.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Writing and Reading Strings (1 of 2)

• To write a string to a binary file, use the 
DataOutputStream class’s writeUTF method.

• This method writes its String argument in a format known 
as UTF–8 encoding.

– Just before writing the string, this method writes a two-
byte integer indicating the number of bytes that the string 
occupies.

– Then, it writes the string’s characters in Unicode. (UTF 
stands for Unicode Text Format.)

• The DataInputStream class’s readUTF method reads 
from the file.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Writing and Reading Strings (2 of 2)

• To write a string to a file:

• To read a string from a file:

• The readUTF method will correctly read a string only when 
the string was written with the writeUTF method.

• Example:
– Write UTF.java
– Read UTF.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Appending Data to Binary Files

• The FileOutputStream constructor takes an optional 
second argument which must be a boolean value.

• If the argument is true, the file will not be erased if it exists; 
new data will be written to the end of the file.

• If the argument is false, the file will be erased if it already 
exists.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Random Access Files (1 of 5)

• Text files and the binary files previously shown use sequential 
file access.

• With sequential access:
– The first time data is read from the file, the data will be 

read from its beginning.
– As the reading continues, the file’s read position advances 

sequentially through the file’s contents.

• Sequential file access is useful in many circumstances.

• If the file is very large, locating data buried deep inside it can 
take a long time.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Random Access Files (2 of 5)

• Java allows a program to perform random file access.

• In random file access, a program may immediately jump to any 
location in the file.

• To create and work with random access files in Java, you use the 
RandomAccessFile class.

– filename: the name of the file.
– mode: a string indicating the mode in which you wish to use the 

file.
▪ “r“ = reading
▪ “rw” = for reading and writing.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Random Access Files (3 of 5)

• When opening a file in “r” mode where the file does not exist, a 
FileNotFoundException will be thrown.

• Opening a file in “r” mode and trying to write to it will throw an 
IOException.

• If you open an existing file in “rw” mode, it will not be deleted and the 
file’s existing content will be preserved.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Random Access Files (4 of 5)

• Items in a sequential access file are accessed one after the 
other.

• Items in a random access file are accessed in any order.

• If you open a file in “rw” mode and the file does not exist, it will 
be created.

• A file that is opened or created with the RandomAccessFile
class is treated as a binary file.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Random Access Files (5 of 5)

• The RandomAccessFile class has:
– the same methods as the DataOutputStream class for 

writing data, and
– the same methods as the DataInputStream class for 

reading data.

• The RandomAccessFile class can be used to sequentially 
process a binary file.

• Example: WriteLetters.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

The File Pointer (1 of 5)

• The RandomAccessFile class treats a file as a stream of 
bytes.

• The bytes are numbered:
– the first byte is byte 0.
– The last byte’s number is one less than the number of 

bytes in the file.

• These byte numbers are similar to an array’s subscripts, and 
are used to identify locations in the file.

• Internally, the RandomAccessFile class keeps a long integer 
value known as the file pointer.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

The File Pointer (2 of 5)

• The file pointer holds the byte number of a location in the file.

• When a file is first opened, the file pointer is set to 0.

• When an item is read from the file, it is read from the byte that 
the file pointer points to.

• Reading also causes the file pointer to advance to the byte just 
beyond the item that was read.

• If another item is immediately read, the reading will begin at 
that point in the file.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

The File Pointer (3 of 5)

• An EOFException is thrown when a read causes the file 
pointer to go beyond the size of the file.

• Writing also takes place at the location pointed to by the file 
pointer.

• If the file pointer points to the end of the file, data will be 
written to the end of the file.

• If the file pointer holds the number of a byte within the file, at a 
location where data is already stored, a write will overwrite the 
data at that point.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

The File Pointer (4 of 5)

• The RandomAccessFile class lets you move the file pointer.

• This allows data to be read and written at any byte location in 
the file.

• The seek method is used to move the file pointer.

• The argument is the number of the byte that you want to move 
the file pointer to.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

The File Pointer (5 of 5)

• Example: ReadRandomLetters.java


