Starting Out with Java: From Control

Structures Through Objects
Sixth Edition

sarting out v J AVA Chapter 11

From Control Structures through Objects I /O
6TH EDITION
l R e i N
oA \ ;? 7 ¢

.
PR s N
s

TONY GADDIS

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



File Input and Output

Reentering data all the time could get tedious for the user.

The data can be saved to a file.
— Files can be input files or output files.

Files:
— Files have to be opened.
— Data is then written to the file.
— The file must be closed prior to program termination.

In general, there are two types of files:
— binary
— text

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



Writing Text to a File

« To open a file for text output you create an instance of
the PrintWriter class.

PrintWriter outputFile = new PrintWriter ("StudentData.txt");

|

Pass the name of the file that you Warning: if the file
wish to open as an argument to already exists, it will be
the PrintWriter constructor. erased and replaced

with a new file.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



The PrintWriter Class (o3

 The PrintWriter class allows you to write data to a file
using the print and print1ln methods, as you have
been using to display data on the screen.

 Just as with the System.out object, the println
method of the PrintWriter class will place a newline
character after the written data.

* The print method writes data without writing the
newline character.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



The PrintWriter Class 2of3)

Open the file.

PrintWriter outputFile = new PrintWriter ("Names.txt");
—outputFile.println ("Chris");
_,outputFile.println ("Kathryn") ;
—outputFile.println ("Jean") ;

outputFile.close () ; <

Close the file.

Write data to the file.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



The PrintWriter Class ;of3)

 Touse the PrintWriter class, put the following
import statement at the top of the source file:

import java.l1o0.*;

« See example: FileWriteDemo.java

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



Exceptions (1 of3)

- When something unexpected happens in a Java
program, an exception is thrown.

- The method that is executing when the exception is
thrown must either handle the exception or pass it up the
line.

- Handling the exception will be discussed later.

* To pass it up the line, the method needs a throws
clause in the method header.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



Exceptions 2 of3)

* Toinsert a throws clause in a method header, simply

add the word throws and the name of the expected
exception.

* PrintWriter objects can throw an TOException, SO
we write the throws clause like this:

public static void main(String[] args) throws IOException

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



Appending Text to a File

« To avoid erasing a file that already exists, create a
FileWriter objectin this manner:

FileWriter fw =
new FileWriter ("names.txt", true):;

* Then, create a PrintWriter object in this manner:

PrintWriter fw = new PrintWriter (fw) ;

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



Specifying a File Location 1 o2

* On a Windows computer, paths contain backslash (\)
characters.

- Remember, if the backslash is used in a string literal, it is
the escape character so you must use two of them:

PrintWriter outFile =

new PrintWriter ("A:\\Pricelist.txt");

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



Specifying a File Location (2 of2)

* This is only necessary if the backslash is in a string
literal.

* |f the backslash is in a String object then it will be
handled properly.

 Fortunately, Java allows Unix style filenames using the
forward slash (/) to separate directories:

PrintWriter outFile = new
PrintWriter ("/home/rharrison/names.txt");

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



Reading Data From a File o3

* You use the File class and the Scanner class to read
data from a file:

Pass the name of the file as
an argumenttothe File

class constructor.

A\ 4

File myFile = new File ("Customers.txt");
Scanner 1inputFile = new Scanner (myFile);

Pass the File object as an
argument to the Scanner

class constructor.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



Reading Data From a File 2or3)

Scanner keyboard = new Scanner (System.in);

System.out.print ("Enter the filename: ");

String filename = keyboard.nextLine();

File file = new File(filename);

Scanner 1nputFile = new Scanner (file);

 The lines above:

Creates an instance of the Scanner class to read from the
keyboard

Prompt the user for a filename

Get the filename from the user

Create an instance of the File class to represent the file
Create an instance of the Scanner class that reads from the file

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



Reading Data From a File or3)

 Once an instance of Scanner is created, data can be

read using the same methods that you have used to read
keyboard input (nextLine, nextInt, nextDouble,

etc).

// Open the file.

File file = new File ("Names.txt");
Scanner 1nputFile = new Scanner (file);
// Read a line from the file.

String str = 1nputFilile.nextLine();

// Close the file.
inputFile.close();

Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



Exceptions of3)

* The Scanner class can throw an IOException when
a F'ile objectis passed to its constructor.

* S0, we puta throws IOException clause inthe
header of the method that instantiates the Scanner

class.

- See Example: ReadFirstLine.java

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



Detecting the End of a File (1 or2)

* The Scanner class’s hasNext () method will return true
If another item can be read from the file.

// Open the file.
File file = new File(filename) ;

Scanner 1inputFile = new Scanner (file);
// Read until the end of the file.
while (inputFile.hasNext())

{

String str = inputFille.nextLine ()
System.out.println (str);

}

inputFile.close() ;// close the file when done.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



Detecting the End of a File or2)

« See example: FileReadDemo.java

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



Binary Files (1 oro)

The way data is stored in memory is sometimes called
the raw binary format.

Data can be stored in a file in its raw binary format.

A file that contains binary data is often called a binary
file.

Storing data in its binary format is more efficient than
storing it as text.

There are some types of data that should only be stored
in its raw binary format.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



Binary Files (2 oro)

 Binary files cannot be opened in a text editor such as Notepad.

« To write data to a binary file you must create objects from the
following classes:

— FileOutputStream - allows you to open a file for writing
binary data. It provides only basic functionality for writing
bytes to the file.

— DataOutputStream - allows you to write data of any
primitive type or String objects to a binary file. Cannot

directly access a file. It is used in conjunction with a
FileOutputStream object that has a connection to a

file.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



Binary Files ¢ ofo)

« ADataOutputStream object is wrapped around a
FileOutputStream object to write data to a binary file.

FileOutputStream fstream = new
FileOutputStream("MyInfo.dat");

DataOutputStream outputFile = new
DataOutputStream(fstream) ;

* If the file that you are opening with the FileOutputStream

object already exists, it will be erased and an empty file by the
same name will be created.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



Binary Files @ oro)

 These statements can combined into one.

DataOutputStream outputFile = new
DataOutputStream (new
FileOutputStream ("MyInfo.dat"));

* Once the DataOutputStream object has been created, you can
use it to write binary data to the file.

- Example: WriteBinaryFile.java

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



Binary Files (s oro)

« To open a binary file for input, you wrap a DataInputStream
object around a FileInputStream object.

FileInputStream fstream = new
FileInputStream ("MyInfo.dat");

DatalInputStream inputFile = new
DatalnputStream(fstream) ;

 These two statements can be combined into one

DatalInputStream inputFile = new
DatalnputStream (new
FileInputStream ("MyInfo.dat"));

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



Binary Files ofo)

 The FileInputStream constructor will throw a
FileNotFoundException if the file named by the string
argument cannot be found.

* Once the DataInputStream object has been created, you
can use it to read binary data from the file.

« Example:
— ReadBinaryFile.java

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



Writing and Reading Strings (1 of2)

» To write a string to a binary file, use the
DataOutputStream class’'s writeUTF method.

» This method writes its String argument in a format known
as UTF-8 encoding.

— Just before writing the string, this method writes a two-
byte integer indicating the number of bytes that the string
occupies.

— Then, it writes the string’s characters in Unicode. (UTF
stands for Unicode Text Format.)

* The DataInputStream class's readUTF method reads
from the file.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



Writing and Reading Strings of2)

To write a string to a file:

String name = "Chloe";
outputFile.writeUTF (name) ;

To read a string from a file:
String name = inputFile.readUTF () ;

The readUTF method will correctly read a string only when
the string was written with the writeUTF method.

Example:
— Write UTF.java
— Read UTF.java

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



Appending Data to Binary Files

* The FileOutputStream constructor takes an optional
second argument which must be a boolean value.

* If the argument is true, the file will not be erased if it exists;
new data will be written to the end of the file.

* If the argument is false, the file will be erased if it already
exists.

FileOutputStream fstream = new
FileOutputStream("MyInfo.dat", true);

DataOutputStream outputFile = new
DataOutputStream(fstream) ;

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



Random Access Files (1 or5)

Text files and the binary files previously shown use sequential
file access.

With sequential access:

— The first time data is read from the file, the data will be
read from its beginning.

— As the reading continues, the file's read position advances
sequentially through the file’s contents.

Sequential file access is useful in many circumstances.

If the file is very large, locating data buried deep inside it can
take a long time.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



Random Access Files or5)

- Java allows a program to perform random file access.

* In random file access, a program may immediately jump to any
location in the file.

« To create and work with random access files in Java, you use the
RandomAccessFile class.

RandomAccessFile (String filename, String mode)

— filename: the name of the file.

— mode: a string indicating the mode in which you wish to use the
file.

[1P91]

r' = reading

1

= “rw” = for reading and writing.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



Random Access Files 3 ors)

// Open a file for random reading.

RandomAccessFile randomFile = new
RandomAccessFile ("MyData.dat", "r");

// Open a file for random reading and writing.

RandomAccessFile randomFile = new
RandomAccessFile ("MyData.dat", "rw");

« When opening a file in “r’ mode where the file does not exist, a
FileNotFoundException will be thrown.

« Opening a file in “r" mode and trying to write to it will throw an
IOException.

* If you open an existing file in “rw” mode, it will not be deleted and the
file’s existing content will be preserved.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



Random Access Files 4 or5)

 |[tems in a sequential access file are accessed one after the
other.

* ltems in a random access file are accessed in any order.

* |f you open a file in “rw” mode and the file does not exist, it will
be created.

A file that is opened or created with the RandomAccessFile
class is treated as a binary file.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



Random Access Files 5 or5)

* The RandomAccessFile class has:

— the same methods as the DataOutputStream class for
writing data, and

— the same methods as the DataInputStream class for
reading data.

 The RandomAccessFile class can be used to sequentially
process a binary file.

- Example: WriteLetters.java

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



The File Pointer (o5

e The RandomAccessFile class treats a file as a stream of
bytes.

* The bytes are numbered:
— the first byte is byte 0.

— The last byte’s number is one less than the number of
bytes in the file.

* These byte numbers are similar to an array’s subscripts, and
are used to identify locations in the file.

* Internally, the RandomAccessFile class keeps a long integer
value known as the file pointer.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



The File Pointer ¢ ors)

* The file pointer holds the byte number of a location in the file.
* When a file is first opened, the file pointer is set to O.

* When an item is read from the file, it is read from the byte that
the file pointer points to.

« Reading also causes the file pointer to advance to the byte just
beyond the item that was read.

* |f another item is immediately read, the reading will begin at
that point in the file.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



The File Pointer ;ors)

* An EOFException is thrown when a read causes the file
pointer to go beyond the size of the file.

« Writing also takes place at the location pointed to by the file
pointer.

* |If the file pointer points to the end of the file, data will be
written to the end of the file.

* |If the file pointer holds the number of a byte within the file, at a
location where data is already stored, a write will overwrite the
data at that point.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



The File Pointer 4 ors)

The RandomAccessFile class lets you move the file pointer.

This allows data to be read and written at any byte location in
the file.

The seek method is used to move the file pointer.

rndFile.seek (long position);

The argument is the number of the byte that you want to move
the file pointer to.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



The File Pointer ors)

RandomAccessFile file = new
RandomAccessFile ("MyInfo.dat", "r");

file.seek(99);

byte b = file.readByte();

- Example: ReadRandomLetters.java

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



