
Starting Out with Java: From Control 
Structures Through Objects
Sixth Edition

Chapter 12
A First Look at GUI 

Applications 

Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Chapter Topics

12.1 Introduction

12.2 Creating Windows

12.3 Equipping GUI Classes with a main method

12.4 Layout Managers

12.5 Radio Buttons and Check Boxes

12.6 Borders

12.7 Focus on Problem Solving: Extending Classes from 
JPanel



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

12.1 Introduction (1 of 2)

• Many Java application use a graphical user interface or 
GUI (pronounced “gooey”).

• A GUI is a graphical window or windows that provide 
interaction with the user.

• GUI’s accept input from:
– the keyboard
– a mouse.

• A window in a GUI consists of components that:
– present data to the user
– allow interaction with the application.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

12.1 Introduction (2 of 2)

• Some common GUI components are:
– buttons, labels, text fields, check boxes, radio buttons, 

combo boxes, and sliders.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

JFC, AWT, Swing 

• Java programmers use the Java Foundation Classes 
(JFC) to create GUI applications.

• The JFC consists of several sets of classes, many of 
which are beyond the scope of this book.

• The two sets of JFC classes that we focus on are AWT 
and Swing classes.

• Java is equipped with a set of classes for drawing 
graphics and creating graphical user interfaces.

• These classes are part of the Abstract Windowing 
Toolkit (AWT).



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Javax.Swing and Java.Awt

• In an application that uses Swing classes, it is necessary to 
use the following statement:

– Note the letter x that appears after the word java.

• Some of the AWT classes are used to determine when events, 
such as the clicking of a mouse, take place in applications.

• In an application that uses an AWT class, it is necessary to 
use the following statement.

Note that there is no x after java in this package name.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

12.2 Creating Windows (1 of 7)

• Often, applications need one or more windows with various 
components.

• A window is a container, which is simply a component that 
holds other components.

• A container that can be displayed as a window is a frame.

• In a Swing application, you create a frame from the JFrame
class.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

12.2 Creating Windows (2 of 7)

• A frame is a basic window that has:
– a border around it,
– a title bar, and
– a set of buttons for:
▪ minimizing,
▪ maximizing, and
▪ closing the window.

• These standard features are sometimes referred to as 
window decorations.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

12.2 Creating Windows (3 of 7)

• See example: ShowWindow.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

12.2 Creating Windows (4 of 7)

• The following import statement is needed to use the swing 
components:

• In the main method, two constants are declared:

• We use these constants later in the program to set the size of the 
window.

• The window’s size is measured in pixels.

• A pixel (picture element) is one of the small dots that make up a 
screen display.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

12.2 Creating Windows (5 of 7)

• An instance of the JFrame class needs to be created:

• This statement:
– creates a JFrame object in memory and
– assigns its address to the window variable.

• The string that is passed to the setTitle method will appear in 
the window’s title bar when it is displayed.

• A JFrame is initially invisible.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

12.2 Creating Windows (6 of 7)

• To set the size of the window:

• To specify the action to take place when the user clicks on the 
close button.

• The setDefaultCloseOperation method takes an int
argument which specifies the action.

– - causes the window to be hidden 
from view, but the application does not end.

– The default action is



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

12.2 Creating Windows (7 of 7)

• The following code displays the window:

• The setVisible method takes a boolean argument.
– true - display the window.
– false - hide the window.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Adding Components (1 of 5)

• Swing provides numerous components that can be added 
to a window.

• Three fundamental components are:
JLabel : An area that can display text.
JTextField : An area in which the user may type a 

single line of input from the keyboard.
JButton : A button that can cause an action to occur 

when it is clicked.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Sketch of Kilometer Converter Graphical 
User Interface



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Adding Components (2 of 5)

• This code declares and instantiates three Swing components.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Adding Components (3 of 5)

• A content pane is a container that is part of every JFrame
object.

• Every component added to a JFrame must be added to its 
content pane. You do this with the JFrame class’s add 
method.

• The content pane is not visible and it does not have a border.

• A panel is also a container that can hold GUI components



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Adding Components (4 of 5)

• Panels cannot be displayed by themselves.

• Panels are commonly used to hold and organize 
collections of related components.

• Create panels with the JPanel class.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Adding Components (5 of 5)

• Components are typically placed on a panel and then the 
panel is added to the Jframe’s content pane.

• Examples: KiloConverter.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Event Driven Programming

• Programs that operate in a GUI environment must be 
event-driven.

• An event is an action that takes place within a program, 
such as the clicking of a button.

• Part of writing a GUI application is creating event 
listeners.

• An event listener is an object that automatically 
executes one of its methods when a specific event 
occurs.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Handling Action Events (1 of 4)

• An event is an action that takes place within a program, such 
as the clicking of a button.

• When an event takes place, the component that is responsible 
for the event creates an event object in memory.

• The event object contains information about the event.

• The component that generated the event object is know as the 
event source.

• It is possible that the source component is connected to one or 
more event listeners.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Handling Action Events (2 of 4)

• An event listener is an object that responds to events.

• The source component fires an event which is passed to 
a method in the event listener.

• Event listener classes are specific to each application.

• Event listener classes are commonly written as private 
inner classes in an application.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Writing Event Listener Classes as Private 
Inner Classes

A class that is defined inside of another class is known as an 
inner class



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Event Listeners Must Implement an 
Interface

• All event listener classes must implement an interface.

• An interface is something like a class containing one or 
more method headers.

• When you write a class that implements an interface, you 
are agreeing that the class will have all of the methods 
that are specified in the interface.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Handling Action Events (3 of 4)

• JButton components generate action events, which require 
an action listener class.

• Action listener classes must meet the following requirements:
– It must implement the ActionListener interface.
– It must have a method named actionPerformed.

• The actionPerformed method takes an argument of the 
ActionEvent type.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Handling Action Events (4 of 4)

When the button is pressed …

The JButton component generates an event object and passes 
it to the action listener object’s actionPerformed method.

Example: KiloConverter.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Registering a Listener

• The process of connecting an event listener object to a 
component is called registering the event listener.

• JButton components have a method named 
addActionListener.

• When the user clicks on the source button, the action 
listener object’s actionPerformed method will be 
executed.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Background and Foreground Colors

• Many of the Swing component classes have methods 
named setBackground and setForeground.

• setBackground is used to change the color of the 
component itself.

• setForeground is used to change the color of the text 
displayed on the component.

• Each method takes a color constant as an argument.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Color Constants

• There are predefined constants that you can use for colors.

Color.BLACK

Color.CYAN

Color.GRAY

Color.LIGHT_GRAY

Color.ORANGE

Color.RED

Color.YELLOW

Color.BLUE

Color.DARK_GRAY

Color.GREEN

Color.MAGENTA

Color.PINK

Color.WHITE

• Examples: ColorWindow.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

12.4 Layout Managers (1 of 3)

• An important part of designing a GUI application is 
determining the layout of the components.

• The term layout refers to the positioning and sizing of 
components.

• In Java, you do not normally specify the exact location of 
a component within a window.

• A layout manager is an object that:
– controls the positions and sizes of components, and
– makes adjustments when necessary.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

12.4 Layout Managers (2 of 3)

• The layout manager object and the container work together.

• Java provides several layout managers:
– FlowLayout - Arranges components in rows. This is the 

default for panels.
– BorderLayout - Arranges components in five regions:

▪ North, South, East, West, and Center.
▪ This is the default layout manager for a JFrame

object’s content pane.
– GridLayout - Arranges components in a grid with rows 

and columns.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

12.4 Layout Managers (3 of 3)

• The Container class is one of the base classes that many 
components are derived from.

• Any component that is derived from the Container class can 
have a layout manager added to it.

• You add a layout manager to a container by calling the 
setLayout method.

• In a JFrame constructor you might use:



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Flowlayout Manager (1 of 3)

• FlowLayout is the default layout manager for JPanel
objects.

• Components appear horizontally, from left to right, in the 
order that they were added. When there is no more room 
in a row, the next components “flow” to the next row.

• See example: Flowlayout Manager



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Flowlayout Manager (2 of 3)

• The FlowLayout manager allows you to align components:
– in the center of each row
– along the left or right edges of each row.

• An overloaded constructor allows you to pass:
– FlowLayout.CENTER,

– FlowLayout.LEFT, or

– FlowLayout.RIGHT.

• Example:



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Flowlayout Manager (3 of 3)

• FlowLayout inserts a gap of five pixels between 
components, horizontally and vertically.

• An overloaded FlowLayout constructor allows these to be 
adjusted.

• The constructor has the following format:

• Example:



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

BorderLayout Manager (1 of 6)

BorderLayout manages five regions where components can 
be placed.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

BorderLayout Manager (2 of 6)

• See example: BorderWindow.java

• A component placed into a container that is managed by 
a BorderLayout must be placed into one of five 
regions:

– BorderLayout.NORTH

– BorderLayout.SOUTH

– BorderLayout.EAST

– BorderLayout.WEST

– BorderLayout.CENTER



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

BorderLayout Manager (3 of 6)

• Each region can hold only one component at a time.

• When a component is added to a region, it is stretched so 
it fills up the entire region.

• BorderLayout is the default manager for JFrame 
objects.

• If you do not pass a second argument to the add method, 
the component will be added to the center region.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

BorderLayout Manager (4 of 6)

• Normally the size of a button is just large enough to 
accommodate the text that it displays

• The buttons displayed in BorderLayout region will not 
retain their normal size.

• The components are stretched to fill all of the space in 
their regions.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

BorderLayout Manager (5 of 6)

• If the user resizes the window, the sizes of the 
components will be changed as well.

• BorderLayout manager resizes components:
– placed in the north or south regions may be resized 

horizontally so it fills up the entire region,
– placed in the east or west regions may be resized 

vertically so it fills up the entire region.
– A component that is placed in the center region may 

be resized both horizontally and vertically so it fills up 
the entire region.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

BorderLayout Manager (6 of 6)

• By default there is no gap between the regions.

• An overloaded BorderLayout constructor allows 
horizontal and vertical gaps to be specified (in pixels).

• The constructor has the following format

• Example:



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Nesting Components in a Layout

• Adding components to panels and then nesting the 
panels inside the regions can overcome the single 
component limitation of layout regions.

• By adding buttons to a JPanel and then adding the 
JPanel object to a region, sophisticated layouts can 
be achieved.

• See example: BorderPanelWindow.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

GridLayout Manager (1 of 4)

GridLayout creates a grid with rows and columns, much 
like a spreadsheet. A container that is managed by a 
GridLayout object is divided into equally sized cells.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

GridLayout Manager (2 of 4)

• GridLayout manager follows some simple rules:
– Each cell can hold only one component.
– All of the cells are the size of the largest component 

placed within the layout.
– A component that is placed in a cell is automatically 

resized to fill up any extra space.

• You pass the number of rows and columns as arguments 
to the GridLayout constructor.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

GridLayout Manager (3 of 4)

• The general format of the constructor:

• Example

• A zero (0) can be passed for one of the arguments but 
not both.

– passing 0 for both arguments will cause an 
IllegalArgumentException to be thrown.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

GridLayout Manager (4 of 4)

• Components are added to a GridLayout in the following 
order (for a 5×5 grid):

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Example: GridWindow.java

GridLayout also accepts nested 
components:

Example: GridPanelWindow.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

12.5 Radio Buttons

• Radio buttons allow the user to select one choice from 
several possible options.

• The JRadioButton class is used to create radio buttons.

• JRadioButton constructors:
–
–

• Example:



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Button Groups (1 of 3)

• Radio buttons normally are grouped together.

• In a radio button group only one of the radio buttons in 
the group may be selected at any time.

• Clicking on a radio button selects it and automatically 
deselects any other radio button in the same group.

• An instance of the ButtonGroup class is a used to 
group radio buttons



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Button Groups (2 of 3)

• The ButtonGroup object creates the mutually exclusive 
relationship between the radio buttons that it contains.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Button Groups (3 of 3)

• ButtonGroup objects are not containers like JPanel 
objects, or content frames.

• If you wish to add the radio buttons to a panel or a 
content frame, you must add them individually.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Radio Button Events

• JRadioButton objects generate an action event when 
they are clicked.

• To respond to an action event, you must write an action 
listener class, just like a JButton event handler.

• See example: MetricConverter.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Determining Selected Radio Buttons

• The JRadioButton class’s isSelected method 
returns a boolean value indicating if the radio button is 
selected.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Selecting a Radio Button in Code

• It is also possible to select a radio button in code with the 
JRadioButton class’s doClick method.

• When the method is called, the radio button is selected 
just as if the user had clicked on it.

• As a result, an action event is generated.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

12.5 Check Boxes (1 of 2)

• A check box appears as a small box with a label 
appearing next to it.

• Like radio buttons, check boxes may be selected or 
deselected at run time.

• When a check box is selected, a small check mark 
appears inside the box.

• Check boxes are often displayed in groups but they are 
not usually grouped in a ButtonGroup.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

12.5 Check Boxes (2 of 2)

• The user is allowed to select any or all of the check boxes that 
are displayed in a group.

• The JCheckBox class is used to create check boxes.

• Two JCheckBox constructors:

–
–

• Example:



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Check Box Events (1 of 2)

• When a JCheckBox object is selected or deselected, it 
generates an item event.

• Handling item events is similar to handling action events.

• Write an item listener class, which must meet the 
following requirements:

– It must implement the ItemListener interface.
– It must have a method named itemStateChanged.
▪ This method must take an argument of the 
ItemEvent type.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Check Box Events (2 of 2)

• Create an object of the class

• Register the item listener object with the JCheckBox 
component.

• On an event, the itemStateChanged method of the 
item listener object is automatically run

– The event object is passed in as an argument.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Determining Selected Check Boxes

• The isSelected method will determine whether a 
JCheckBox component is selected.

• The method returns a boolean value.

• See example: ColorCheckBoxWindow.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Selecting Check Boxes in Code

• It is possible to select check boxes in code with the 
JCheckBox class’s doClick method.

• When the method is called, the check box is selected just 
as if the user had clicked on it.

• As a result, an item event is generated.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

12.6 Borders (1 of 2)

• Windows have a more organized look if related components 
are grouped inside borders.

• You can add a border to any component that is derived from 
the JComponent class.

– Any component derived from JComponent inherits a 
method named setBorder



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

12.6 Borders (2 of 2)

• The setBorder method is used to add a border to the 
component.

• The setBorder method accepts a Border object as its 
argument.

• A Border object contains detailed information describing 
the appearance of a border.

• The BorderFactory class, which is part of the 
javax.swing package, has static methods that return 
various types of borders.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Table 12-6 Borders Produced by the 
BorderFactory Class

Border BorderFactory Method Description

Compound 
border

createCompoundBorder
A border that has two parts: an inside edge and 
an outside edge. The inside and outside edges 
can be any of the other borders.

Empty border createEmptyBorder A border that contains only empty space.

Etched border createEtchedBorder A border with a 3D appearance that looks 
“etched” into the background.

Line border createLineBorder A border that appears as a line.

Lowered 
bevel border

createLoweredBevelBorder
A border that looks like beveled edges. It has a 
3D appearance that gives the illusion of being 
sunken into the surrounding background.

Matte border createMatteBorder A line border that can have edges of different 
thicknesses.

Raised bevel 
border

createRaisedBevelBorder
A border that looks like beveled edges. It has a 
3D appearance that gives the illusion of being 
raised above the surrounding background.

Titled border createTitledBorder An etched border with a title.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Copyright


