Starting Out with Java: From Control
Structures Through Objects

Sixth Edition
starting out with >>> ™
J AV A Chapter 12
From Control StructuresthrgTqut;D?sLe;ts A F”.St L O Ok at GUI
g™, (Applications
AR AN

TONY GADDIS

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Chapter Topics

12.1 Introduction

12.2 Creating Windows

12.3 Equipping GUI Classes with a main method
12.4 Layout Managers

12.5 Radio Buttons and Check Boxes

12.6 Borders

12.7 Focus on Problem Solving: Extending Classes from
JPanel

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

12.1 Introduction @ of2)

Many Java application use a graphical user interface or
GUI (pronounced “gooey”).

A GUI is a graphical window or windows that provide
interaction with the user.

GUI's accept input from:
— the keyboard
— a mouse.

A window in a GUI consists of components that:
— present data to the user
— allow interaction with the application.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

12.1 Introduction of2)

« Some common GUI components are:

— buttons, labels, text fields, check boxes, radio buttons,
combo boxes, and sliders.

| £:| A tour of varicus components |- |- [
Label and Text Field Combo Box Check Box
Name: Dog - || This is a check box.

List Radio Buttons Slider
Beans) Option 1 .
Broccoli) Option 2 0 10 20 30
Carrots ~ Oution 3
Lettuce R

Close

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

JFC, AWT, Swing

- Java programmers use the Java Foundation Classes
(JFC) to create GUI applications.

* The JFC consists of several sets of classes, many of
which are beyond the scope of this book.

* The two sets of JFC classes that we focus on are AWT
and Swing classes.

 Java is equipped with a set of classes for drawing
graphics and creating graphical user interfaces.

* These classes are part of the Abstract Windowing
Toolkit (AWT).

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Javax.Swing and Java.Awt

 |In an application that uses Swing classes, it is necessary to
use the following statement:

import javax.swing.*;
— Note the letter x that appears after the word java.

« Some of the AWT classes are used to determine when events,
such as the clicking of a mouse, take place in applications.

 |In an application that uses an AWT class, it is necessary to
use the following statement.

import java.awt.*;

Note that there is no x after java in this package name.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

12.2 Creating Windows (1 of7)

Often, applications need one or more windows with various
components.

A window is a container, which is simply a component that
holds other components.

A container that can be displayed as a window is a frame.

In a Swing application, you create a frame from the JFrame
class.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

12.2 Creating Windows (2 of7)

« A frame is a basic window that has:
— a border around it,
— a title bar, and
— a set of buttons for:
= minimizing,
* maximizing, and
= closing the window.

 These standard features are sometimes referred to as
window decorations.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

12.2 Creating Windows @ of7)

« See example: ShowWindow.java

|| A Simple Window == ()

Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

12.2 Creating Windows @ of7)

« The following import statement is needed to use the swing
components:

import Jjavax.swing.*;
* |In the main method, two constants are declared:

final int WINDOW WIDTH = 350;
final int WINDOW HEIGHT = 250;

« We use these constants later in the program to set the size of the
window.

* The window’s size is measured in pixels.

* A pixel (picture element) is one of the small dots that make up a
screen display.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

12.2 Creating Windows (s of7)

An instance of the JFrame class needs to be created:

JFrame window = new JFrame () ;

This statement:
— creates a JFrame object in memory and

— assigns its address to the window variable.

The string that is passed to the setTitle method will appear in
the window's title bar when it is displayed.

window.setTitle ("A Simple Window");

A JFrame is initially invisible.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

12.2 Creating Windows (6 of7)

* To set the size of the window:

window.setSize (WINDOW WIDTH, WINDOW HEIGHT) ;

* To specify the action to take place when the user clicks on the
close button.
window.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;

* The setDefaultCloseOperation method takes an int
argument which specifies the action.

— JFrame.HIDE ON CLOSE - causes the window to be hidden
from view, but the application does not end.

— The default action is Jrrame.HIDE ON CLOSE

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

12.2 Creating Windows (707

* The following code displays the window:
window.setVisible (true);

* The setVisible method takes a boolean argument.
— true - display the window.
— false - hide the window.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Adding Components (i ofs)

« Swing provides numerous components that can be added
to a window.

* Three fundamental components are:
JLabel : An area that can display text.

JTextField : An area in which the user may type a
single line of input from the keyboard.

JButton : A button that can cause an action to occur
when it is clicked.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Sketch of Kilometer Converter Graphical
User Interface

Window Title
Kilometer Converter X
F l AN

Label —

Text Field

—Enter a distance in kilometers

Calculate

4

Button

Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Adding Components (ofs)

private JLabel message;
private JTextField kilometers;

private JButton calcButton;
message = new JLabel (
"Enter a distance in kilometers");

kilometers = new JTextField (10) ;

calcButton = new JButton("Calculate");

* This code declares and instantiates three Swing components.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Adding Components ¢ ofs)

A content pane is a container that is part of every JFrame
object.

Every component added to a JFrame must be added to its
content pane. You do this with the JFrame class’s add

method.
The content pane is not visible and it does not have a border.

A panel is also a container that can hold GUI components

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Adding Components @ ofs)

» Panels cannot be displayed by themselves.

» Panels are commonly used to hold and organize
collections of related components.

* Create panels with the JPanel class.

private JPanel panel;

panel = new JPanel () ;
panel.add (message) ;
panel.add (kilometers) ;

panel.add (calcButton);

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Adding Components ¢ ofs)

- Components are typically placed on a panel and then the
panel is added to the Jframe’s content pane.

add (panel) ;

« Examples: KiloConverter.java

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Event Driven Programming

* Programs that operate in a GUI environment must be
event-driven.

* An event is an action that takes place within a program,
such as the clicking of a button.

 Part of writing a GUI application is creating event
listeners.

- An event listener is an object that automatically
executes one of its methods when a specific event
OCCurs.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Handling Action Events (i or4)

- An event is an action that takes place within a program, such
as the clicking of a button.

* When an event takes place, the component that is responsible
for the event creates an event object in memory.

* The event object contains information about the event.

« The component that generated the event object is know as the
event source.

* It is possible that the source component is connected to one or
more event listeners.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Handling Action Events (2 or4)

An event listener is an object that responds to events.

The source component fires an event which is passed to
a method in the event listener.

Event listener classes are specific to each application.

Event listener classes are commonly written as private
Inner classes in an application.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Writing Event Listener Classes as Private
Inner Classes

A class that is defined inside of another class is known as an
inner class

public class Outer

{
Fields and methods of the Outer class appear here.

private class Inner

{
Fields and methods of the Inner class appear here.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Event Listeners Must Implement an
Interface

 All event listener classes must implement an interface.

 An interface is something like a class containing one or
more method headers.

* When you write a class that implements an interface, you
are agreeing that the class will have all of the methods
that are specified in the interface.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Handling Action Events or4)

* JButton components generate action events, which require
an action listener class.

 Action listener classes must meet the following requirements:
— It must implement the ActionListener interface.
— It must have a method named actionPerformed.

 The actionPerformed method takes an argument of the
ActionEvent type.

public void actionPerformed (ActionEvent e)

{
Code to be executed when button is pressed goes here.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Handling Action Events @ or4)

Event
Object l
JButton Component Action Listener Object
void actionPerformed (ActionEvent e)

When the button is pressed ...

The JButton component generates an event object and passes
it to the action listener object’'s actionPerformed method.

Example: KiloConverter.java

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Registering a Listener

* The process of connecting an event listener object to a
component is called registering the event listener.

« JButton components have a method named
addActionListener.

calcButton.addActionListener (
new CalcButtonListener());

 When the user clicks on the source button, the action
listener object’'s actionPerformed method will be
executed.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Background and Foreground Colors

» Many of the Swing component classes have methods
named setBackground and setForeground.

* setBackground is used to change the color of the
component itself.

* setForeground is used to change the color of the text
displayed on the component.

- Each method takes a color constant as an argument.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Color Constants

* There are predefined constants that you can use for colors.

Color.BLACK Color.BLUE
Color.CYAN Color.DARK GRAY
Color.GRAY Color.GREEN
Color.LIGHT GRAY Color .MAGENTA
Color.ORANGE Color.PINK
Color.RED Color .WHITE

Color.YELLOW

« Examples: ColorWindow.java

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

12.4 Layout Managers (i of3)

An important part of designing a GUI application is
determining the layout of the components.

The term layout refers to the positioning and sizing of
components.

In Java, you do not normally specify the exact location of
a component within a window.

A layout manager is an object that:
— controls the positions and sizes of components, and
— makes adjustments when necessary.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

12.4 Layout Managers (2 or3)

* The layout manager object and the container work together.

- Java provides several layout managers:

— FlowLayout - Arranges components in rows. This is the
default for panels.

— BorderLayout - Arranges components in five regions:

= North, South, East, West, and Center.

= This is the default layout manager for a JFrame
object’s content pane.

— GridLayout - Arranges components in a grid with rows
and columns.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

12.4 Layout Managers @ or3)

 The Container class is one of the base classes that many
components are derived from.

* Any component that is derived from the Container class can
have a layout manager added to it.

* You add a layout manager to a container by calling the
setLayout method.

JPanel panel = new JPanel () ;
panel.setlLayout (new BorderLayout());

* In a JFrame constructor you might use:

setLayout (new FlowLayout ())

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Flowlayout Manager (or3)

* FlowLayout is the default layout manager for JPanel
objects.

« Components appear horizontally, from left to right, in the
order that they were added. When there is no more room
in a row, the next components “flow” to the next row.

« See example: Flowlayout Manager

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Flowlayout Manager (2or3)

- The FlowLayout manager allows you to align components:

— in the center of each row
— along the left or right edges of each row.

» An overloaded constructor allows you to pass:
— FlowLayout.CENTER,

— FlowLayout.LEFT, or
— FlowLayout .RIGHT.

- Example:

setLayout (new FlowLayout (FlowLayout.LEFT));

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Flowlayout Manager or3)

* FlowLayout inserts a gap of five pixels between
components, horizontally and vertically.

* An overloaded FlowLayout constructor allows these to be
adjusted.

« The constructor has the following format:

FlowLayout (int alignment,
int horizontalGap,
int verticalGap)

- Example:
setLayout (new FlowLayout (FlowLayout.LEFT, 10, 7))

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

BorderLayout Manager (i of6)

BorderLayout manages five regions where components can
be placed.

North Region

¥¥est Center Region East
Region d Region

South Region

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

BorderLayout Manager (o)

« See example: BorderWindow.java

* A component placed into a container that is managed by
a BorderLayout must be placed into one of five

regions:

— BorderLayout.NORTH
— BorderLayout.SOUTH
— BorderLayout .EAST
— BorderLayout .WEST

— BorderLayout .CENTER

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

BorderLayout Manager g of6)

» Each region can hold only one component at a time.

* When a component is added to a region, it is stretched so
it fills up the entire region.

* BorderLayout is the default manager for JFrame
objects.

add (button, BorderLayout.NORTH) ;

* If you do not pass a second argument to the add method,
the component will be added to the center region.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

BorderLayout Manager @ ofo)

* Normally the size of a button is just large enough to
accommodate the text that it displays

* The buttons displayed in BorderLayout region will not
retain their normal size.

* The components are stretched to fill all of the space in
their regions.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

BorderLayout Manager (s of6)

 |f the user resizes the window, the sizes of the
components will be changed as well.

* BorderLayout manager resizes components:

— placed in the north or south regions may be resized
horizontally so it fills up the entire region,

— placed in the east or west regions may be resized
vertically so it fills up the entire region.

— A component that is placed in the center region may
be resized both horizontally and vertically so it fills up
the entire region.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

BorderLayout Manager (o)

By default there is no gap between the regions.

An overloaded BorderLayout constructor allows
horizontal and vertical gaps to be specified (in pixels).

The constructor has the following format

BorderLayout (int horizontalGap, int verticalGap)

Example:
setLayout (new BorderLayout (5,10));

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Nesting Components in a Layout

» Adding components to panels and then nesting the
panels inside the regions can overcome the single
component limitation of layout regions.

* By adding buttons to a JPanel and then adding the
JPanel object to a region, sophisticated layouts can
be achieved.

+ See example: BorderPanelWindow.java

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

GridLayout Manager (of4)

GridLayout creates a grid with rows and columns, much

like a spreadsheet. A container that is managed by a
GridLayout object is divided into equally sized cells.

rOWs

columns

A

\.

Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

GridLayout Manager o4

* GridLayout manager follows some simple rules:
— Each cell can hold only one component.

— All of the cells are the size of the largest component
placed within the layout.

— A component that is placed in a cell is automatically
resized to fill up any extra space.

* You pass the number of rows and columns as arguments
to the GridLayout constructor.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

GridLayout Manager of4)

* The general format of the constructor:
GridLayout (int rows, int columns)

- Example

setLayout (new GridLayout (2, 3));

* A zero (0) can be passed for one of the arguments but
not both.

— passing 0 for both arguments will cause an
IllegalArgumentException to be thrown.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

GridLayout Manager o4

- Components are added to a GridLayout in the following

order (for a 5x5 grid):

10

11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

Example: GridWindow.java

GridLayout also accepts nested
components:

Example: GridPanelWindow.java

Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

12.5 Radio Buttons

 Radio buttons allow the user to select one choice from
several possible options.

* The JRadioButton class is used to create radio buttons.

¢ JRadioButton constructors: Button appears
already selected
— JRadioButton (String text) - when true

— JRadioButton (String text, boolean selected)

- Example:

new JRadioButton ("Choice 1");

JRadioButton radiol

or
JRadioButton radiol new JRadioButton (

"Choice 1", true);

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Button Groups @ of3)

Radio buttons normally are grouped together.

In a radio button group only one of the radio buttons in
the group may be selected at any time.

Clicking on a radio button selects it and automatically
deselects any other radio button in the same group.

An instance of the ButtonGroup class is a used to
group radio buttons

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Button Groups of3)

* The ButtonGroup object creates the mutually exclusive
relationship between the radio buttons that it contains.

JRadioButton radiol = new JRadioButton ("Choice 1",
true) ;

JRadioButton radio?2 = new JRadioButton ("Choice 2");

JRadioButton radio3 = new JRadioButton ("Choice 3");

ButtonGroup group = new ButtonGroup() ;

group.add(radiol) ;

group.add(radio?2) ;

group.add(radio3) ;

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Button Groups ¢ of3)

* ButtonGroup objects are not containers like JPanel
objects, or content frames.

* If you wish to add the radio buttons to a panel or a
content frame, you must add them individually.

panel.add (radiol) ;
panel.add(radio2) ;
panel.add (radio3) ;

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Radio Button Events

 JRadioButton objects generate an action event when
they are clicked.

* To respond to an action event, you must write an action
listener class, just like a JButton event handler.

« See example: MetricConverter.java

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Determining Selected Radio Buttons

e The JRadioButton class’s isSelected method
returns a boolean value indicating if the radio button is
selected.

1f (radio.isSelected())
{

// Code here executes if the radio
// button is selected.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Selecting a Radio Button in Code

* |t is also possible to select a radio button in code with the
JRadioButton class’s doClick method.

 When the method is called, the radio button is selected
just as if the user had clicked on it.

* As a result, an action event is generated.

radio.doClick () ;

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

12.5 Check Boxes (1 of2)

A check box appears as a small box with a label
appearing next to it.

* Like radio buttons, check boxes may be selected or
deselected at run time.

 When a check box is selected, a small check mark
appears inside the box.

» Check boxes are often displayed in groups but they are
not usually grouped in a ButtonGroup.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

12.5 Check Boxes 2 of2)

The user is allowed to select any or all of the check boxes that
are displayed in a group.

The JCheckBox class is used to create check boxes.

Two JCheckBox constructors: Check appears
in box if true

— JCheckBox (String text)

— JCheckBox (String text, boolean selected)

« Example:
JCheckBox checkl = new JCheckBox ("Macaroni") ;
or
JCheckBox checkl = new JCheckBox ("Macaroni",

true) ;

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Check Box Events (1 or2)

- When a JCheckBox object is selected or deselected, it
generates an item event.

« Handling item events is similar to handling action events.

* Write an item listener class, which must meet the
following requirements:

— It must implement the ItemListener interface.
— It must have a method named itemStateChanged.

= This method must take an argument of the
TtemEvent type.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Check Box Events ¢ or2)

« Create an object of the class

» Register the item listener object with the JCheckBox
component.

* On an event, the itemStateChanged method of the
item listener object is automatically run

— The event object is passed in as an argument.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Determining Selected Check Boxes

* The isSelected method will determine whether a
JCheckBox component is selected.

* The method returns a boolean value.

1f (checkBox.1isSelected())
{

// Code here executes i1f the check
// box is selected.

}

+ See example: ColorCheckBoxWindow.java

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Selecting Check Boxes in Code

* |t is possible to select check boxes in code with the
JCheckBox class’s doC1lick method.

* When the method is called, the check box is selected just
as if the user had clicked on it.

* As aresult, an item event is generated.

checkBox.doClick () ;

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

12.6 Borders (o2

- Windows have a more organized look if related components
are grouped inside borders.

Choices

| Choice 1
v! Choice 2 |_| Choice 2

'¥| Choice 1

'v| Choice 3 _| Choice 3

* You can add a border to any component that is derived from
the JComponent class.

— Any component derived from JComponent inherits a
method named setBorder

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

12.6 Borders o2

* The setBorder method is used to add a border to the
component.

* The setBorder method accepts a Border object as its
argument.

* A Border object contains detailed information describing
the appearance of a border.

 The BorderFactory class, which is part of the
javax.swing package, has static methods that return

various types of borders.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Table 12-6 Borders Produced by the
BorderFactory Class

Border BorderFactory Method Description
c q A border that has two parts: an inside edge and
ompoun createCompoundBorder an outside edge. The inside and outside edges
border
can be any of the other borders.
Empty border createEmptyBorder A border that contains only empty space.

A border with a 3D appearance that looks

EtchedB
Etched border createktchedBorder “etched” into the background.

Line border createlineBorder A border that appears as a line.

A border that looks like beveled edges. It has a
createlLoweredBevelBorder 3D appearance that gives the illusion of being

sunken into the surrounding background.

Lowered
bevel border

A line border that can have edges of different

createMatteBorder .
Matte border thicknesses.

A border that looks like beveled edges. It has a

Raised bevel createRaisedBevelBorder 3D appearance that gives the illusion of being
border : :

raised above the surrounding background.
Titled border createTitledBorder An etched border with a title.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Copyright

This work is protected by United States copyright laws and is provided solely
for the use of instructors in teaching their courses and assessing student
learning. Dissemination or sale of any part of this work (including on the
World Wide Web) will destroy the integrity of the work and is not permit-
ted. The work and materials from it should never be made available to
students except by instructors using the accompanying text in their

classes. All recipients of this work are expected to ahide by these
restrictions and to honor the intended pedagogical purposes and the needs of
other instructors who rely on these materials.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

