


System.out.print();

Scanner.nextLine();

String.compareTo();

…



Starting Out with Java: From Control 
Structures Through Objects
Sixth Edition

Chapter 6
A First Look at Classes

Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Chapter Topics

6.1 Objects and Classes

6.2 Writing a Simple Class, Step by Step

6.3 Instance Fields and Methods

6.4 Constructors

6.5 Passing Objects as Arguments

6.6 Overloading Methods and Constructors

6.7 Scope of Instance Fields

6.8 Packages and import Statements



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

6.1 Objects and Classes (1 of 8)

• An object exists in memory, and performs a specific task.

• Objects have two general capabilities:
– Objects can store data. The pieces of data stored in 

an object are known as fields.
– Objects can perform operations. The operations that 

an object can perform are known as methods.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

6.1 Objects and Classes (2 of 8)

• You have already used the following objects:
– Scanner objects, for reading input
– Random objects, for generating random numbers
– PrintWriter objects, for writing data to files

• When a program needs the services of a particular type 
of object, it creates that object in memory, and then calls 
that object's methods as necessary.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

6.1 Objects and Classes (3 of 8)

• Classes: Where Objects Come From
– A class is code that describes a particular type of 

object. It specifies the data that an object can hold 
(the object’s fields), and the actions that an object can 
perform (the object’s methods).

– You can think of a class as a code “blueprint” that can 
be used to create a particular type of object.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

6.1 Objects and Classes (4 of 8)

• When a program is running, it can use the class to 
create, in memory, as many objects of a specific type as 
needed.

• Each object that is created from a class is called an 
instance of the class.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

6.1 Objects and Classes (5 of 8)

Example:



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

6.1 Objects and Classes (6 of 8)

Example:



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

6.1 Objects and Classes (7 of 8)

Example:



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

6.1 Objects and Classes (8 of 8)

• The Java API provides many classes
– So far, the classes that you have created objects from 

are provided by the Java API.
– Examples:
▪ Scanner
▪ Random
▪ PrintWriter

• See ObjectDemo.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Writing a Class, Step by Step (1 of 2)

• A Rectangle object will have the following fields:
– length. The length field will hold the rectangle’s 

length.
– width. The width field will hold the rectangle’s width.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Writing a Class, Step by Step (2 of 2)

• The Rectangle class will also have the following methods:
– setLength. The setLength method will store a value in 

an object’s length field.
– setWidth. The setWidth method will store a value in an 

object’s width field.
– getLength. The getLength method will return the value 

in an object’s length field.
– getWidth. The getWidth method will return the value in 

an object’s width field.
– getArea. The getArea method will return the area of the 

rectangle, which is the result of the object’s length
multiplied by its width.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

UML Diagram

• Unified Modeling Language (UML) provides a set of 
standard diagrams for graphically depicting object-oriented 
systems.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

UML Diagram for Rectangle Class



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Writing the Code for the Class Fields



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Access Specifiers

• An access specifier is a Java keyword that indicates how a 
field or method can be accessed.

• public

– When the public access specifier is applied to a class 
member, the member can be accessed by code inside the 
class or outside.

• private

– When the private access specifier is applied to a class 
member, the member cannot be accessed by code outside 
the class. The member can be accessed only by methods 
that are members of the same class.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Header for the setLength Method



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Writing and Demonstrating the 
setLength Method

Examples: Rectangle.java, LengthDemo.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Creating a Rectangle Object

The box variable 
holds the address 
of the Rectangle 
object.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Calling the setLength Method

The box variable 
holds the address 
of the Rectangle
object.

This is the state of the box object after the setLength
method executes



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Writing the getLength Method

Similarly, the setWidth and getWidth methods can be 
created.

Examples: Rectangle.java, LengthWidthDemo.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Writing and Demonstrating the getArea 
Method

Examples: Rectangle.java, RectangleDemo.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Accessor and Mutator Methods

• Because of the concept of data hiding, fields in a class 
are private.

• The methods that retrieve the data of fields are called 
accessors.

• The methods that modify the data of fields are called 
mutators.

• Each field that the programmer wishes to be viewed by 
other classes needs an accessor.

• Each field that the programmer wishes to be modified by 
other classes needs a mutator.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Accessors and Mutators

• For the Rectangle example, the accessors and mutators are:
– setLength : Sets the value of the length field.

– setWidth : Sets the value of the width field.

– getLength : Returns the value of the length field.

– getWidth : Returns the value of the width field.

• Other names for these methods are getters and setters.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Data Hiding (1 of 2)

• An object hides its internal, private fields from code that is 
outside the class that the object is an instance of.

• Only the class’s methods may directly access and make 
changes to the object’s internal data.

• Code outside the class must use the class’s public 
methods to operate on an object’s private fields.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Data Hiding (2 of 2)

• Data hiding is important because classes are typically 
used as components in large software systems, involving 
a team of programmers.

• Data hiding helps enforce the integrity of an object’s 
internal data.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Stale Data (1 of 2)

• Some data is the result of a calculation.

• Consider the area of a rectangle.
– length × width

• It would be impractical to use an area variable here.

• Data that requires the calculation of various factors has 
the potential to become stale.

• To avoid stale data, it is best to calculate the value of that 
data within a method rather than store it in a variable.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Stale Data (2 of 2)

• Rather than use an area variable in a Rectangle class:

• This dynamically calculates the value of the rectangle’s 
area when the method is called.

• Now, any change to the length or width variables will 
not leave the area of the rectangle stale.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

UML Data Type and Parameter Notation (1 of 4)

• UML diagrams are language independent.

• UML diagrams use an independent notation to show 
return types, access modifiers, etc.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

UML Data Type and Parameter Notation (2 of 4)



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

UML Data Type and Parameter Notation (3 of 4)



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

UML Data Type and Parameter Notation (4 of 4)



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Converting the UML Diagram to Code (1 of 3)

• Putting all of this information together, a Java class file 
can be built easily using the UML diagram.

• The UML diagram parts match the Java class file 
structure.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Converting the UML Diagram to Code (2 of 3)

The structure of the class can be compiled and tested without having 
bodies for the methods. Just be sure to put in dummy return values for 
methods that have a return type other than void.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Converting the UML Diagram to Code (3 of 3)

Once the class structure has been tested, the method bodies 
can be written and tested.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Class Layout Conventions

• The layout of a source code file can vary by employer or 
instructor.

• A common layout is:
– Fields listed first
– Methods listed second
▪ Accessors and mutators are typically grouped.

• There are tools that can help in formatting layout to 
specific standards.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Instance Fields and Methods (1 of 2)

• Fields and methods that are declared as previously 
shown are called instance fields and instance 
methods.

• Objects created from a class each have their own copy of 
instance fields.

• Instance methods are methods that are not declared with 
a special keyword, static.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Instance Fields and Methods (2 of 2)

• Instance fields and instance methods require an object to 
be created in order to be used.

• See example: RoomAreas.java

• Note that each room represented in this example can 
have different dimensions.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

States of Three Different Rectangle Objects

The kitchen variable holds 
the address of a Rectangle
Object.

The bedroom variable holds 
the address of a Rectangle
Object.

The den variable holds the 
address of a Rectangle
Object.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Constructors (1 of 2)

• Classes can have special methods called constructors.

• A constructor is a method that is automatically called 
when an object is created.

• Constructors are used to perform operations at the time 
an object is created.

• Constructors typically initialize instance fields and 
perform other object initialization tasks.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Constructors (2 of 2)

• Constructors have a few special properties that set them 
apart from normal methods.

– Constructors have the same name as the class.
– Constructors have no return type (not even void).
– Constructors may not return any values.
– Constructors are typically public.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Constructor for Rectangle Class

Examples: Rectangle.java, ConstructorDemo.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Constructors in UML

• In UML, the most common way constructors are defined 
is:



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Uninitialized Local Reference Variables

• Reference variables can be declared without being initialized.

• This statement does not create a Rectangle object, so it is 
an uninitialized local reference variable.

• A local reference variable must reference an object before it 
can be used, otherwise a compiler error will occur.

• box will now reference a Rectangle object of length 7.0 and 
width 14.0.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

The Default Constructor (1 of 2)

• When an object is created, its constructor is always
called.

• If you do not write a constructor, Java provides one when 
the class is compiled. The constructor that Java provides 
is known as the default constructor.

– It sets all of the object’s numeric fields to 0.
– It sets all of the object’s boolean fields to false.
– It sets all of the object’s reference variables to the 

special value null.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

The Default Constructor (2 of 2)

• The default constructor is a constructor with no 
parameters, used to initialize an object in a default 
configuration.

• The only time that Java provides a default constructor is 
when you do not write any constructor for a class.

– See example: First version of Rectangle.java

• A default constructor is not provided by Java if a 
constructor is already written.

– See example: Rectangle.java with Constructor



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Writing Your Own No-Arg Constructor

• A constructor that does not accept arguments is known 
as a no-arg constructor.

• The default constructor (provided by Java) is a no-arg 
constructor.

• We can write our own no-arg constructor



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

The String Class Constructor (1 of 2)

• One of the String class constructors accepts a string 
literal as an argument.

• This string literal is used to initialize a String object.

• For instance:



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

The String Class Constructor (2 of 2)

• This creates a new reference variable name that points 
to a String object that represents the name “Michael 
Long”

• Because they are used so often, String objects can be 
created with a shorthand:



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Passing Objects as Arguments

• When you pass a object as an argument, the thing that is 
passed into the parameter variable is the object's 
memory address.

• As a result, parameter variable references the object, and 
the receiving method has access to the object.

• See DieArgument.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Overloading Methods and Constructors

• Two or more methods in a class may have the same 
name as long as their parameter lists are different.

• When this occurs, it is called method overloading. This 
also applies to constructors.

• Method overloading is important because sometimes you 
need several different ways to perform the same 
operation.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Overloaded Method add



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Method Signature and Binding

• A method signature consists of the method’s name and the 
data types of the method’s parameters, in the order that they 
appear. The return type is not part of the signature.

• The process of matching a method call with the correct 
method is known as binding. The compiler uses the method 
signature to determine which version of the overloaded 
method to bind the call to.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Rectangle Class Constructor Overload (1 of 2)

• If we were to add the no-arg constructor we wrote 
previously to our Rectangle class in addition to the 
original constructor we wrote, what would happen when 
we execute the following calls?



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Rectangle Class Constructor Overload (2 of 2)

• If we were to add the no-arg constructor we wrote 
previously to our Rectangle class in addition to the 
original constructor we wrote, what would happen when 
we execute the following calls?

The first call would use the no-arg constructor and box1 would have a 
length of 1.0 and width of 1.0.

The second call would use the original constructor and box2 would 
have a length of 5.0 and a width of 10.0.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

The BankAccount Example

BankAccount.java
AccountTest.java



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Scope of Instance Fields

• Variables declared as instance fields in a class can be 
accessed by any instance method in the same class as 
the field.

• If an instance field is declared with the public access 
specifier, it can also be accessed by code outside the 
class, as long as an instance of the class exists.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Shadowing

• A parameter variable is, in effect, a local variable.

• Within a method, variable names must be unique.

• A method may have a local variable with the same name 
as an instance field.

• This is called shadowing.

• The local variable will hide the value of the instance field.

• Shadowing is discouraged and local variable names 
should not be the same as instance field names.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Packages and import Statements

• Classes in the Java API are organized into packages.

• Explicit and Wildcard import statements
– Explicit imports name a specific class

▪

– Wildcard imports name a package, followed by an *
▪

• The java.lang package is automatically made 
available to any Java class.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Some Java Standard Packages

Table 6-2 A few of the standard Java packages

Package Description
java.applet Provides the classes necessary to create an applet.
java.awt Provides classes for the Abstract Windowing Toolkit. These classes are used in 

drawing images and creating graphical user interfaces.

java.io Provides classes that perform various types of input and output.
java.lang Provides general classes for the Java language. This package is

automatically imported.
java.net Provides classes for network communications.
java.security Provides classes that implement security features.
java.sql Provides classes for accessing databases using structured query language.
java.text Provides various classes for formatting text.
java.util Provides various utility classes.
javax.swing Provides classes for creating graphical user interfaces.



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Object Oriented Design (1 of 2)

Finding Classes and their Responsibilities

• Finding the classes
– Get written description of the problem domain
– Identify all nouns, each is a potential class
– Refine list to include only classes relevant to the problem

• Identify the responsibilities
– Things a class is responsible for knowing
– Things a class is responsible for doing
– Refine list to include only classes relevant to the problem



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Object Oriented Design (2 of 2)

– Things a class is responsible for knowing
– Things a class is responsible for doing
– Refine list to include only classes relevant to the 

problem



Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Copyright


