Starting Out with Java: From Control
Structures Through Objects

Sixth Edition
starting out with >>> m
From Control Structures thr;)Tqut;D?::Le;ts TeXt PrOceSSIHQ and MOre
y ™ (about Wrapper Classes

TONY GADDIS

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Chapter Topics

9.1 Introduction to Wrapper Classes

9.2 Character Testing and Conversion with the Character Class
9.3 More String Methods

9.4 The StringBuilder Class

9.5 Tokenizing Strings

9.6 Wrapper Classes for the Numeric Data Types

9.7 Focus on Problem Solving: The TestScoreReader Class

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

9.1 Introduction to Wrapper Classes

- Java provides 8 primitive data types.

* They are called “primitive” because they are not created
from classes.

 Java provides wrapper classes for all of the primitive data
types.

* A wrapper class is a class that is "wrapped around” a
primitive data type.

* The wrapper classes are part of java.lang so to use
them, there is no import statement required.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

9.2 Character Testing and Conversion with
the Character Class (10r2)

 The Character class allows a char data type to be
wrapped in an object.

 The Character class provides methods that allow easy
testing, processing, and conversion of character data.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

The Character Class

Method Description
boolean isDigit(Returns true if the argument passed into ch is a digit from
char ch) 0 through 9. Otherwise returns false.
boolean isLetter (Returns true if the argument passed into ch is an
char ch) alphabetic letter. Otherwise returns false.
boolean isLetterOrDigit (| Returns trueifthe character passed into ch contains a
digit (0 through 9) or an alphabetic letter. Otherwise
char ch)
returns false.
boolean isLowerCase (Returns true if the argument passed into ch is a lowercase
char ch) letter. Otherwise returns false.
boolean isUpperCase (Returns true if the argument passed into ch is an
char ch) uppercase letter. Otherwise returns false.
boolean isSpaceChar (Returns true if the argument passed into ch is a space
char ch) character. Otherwise returns false.

@ Pearson

Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

9.3 Character Testing and Conversion with
the Character Class o2

« Example:
— CharacterTest.java
— CustomerNumber.java

 The Character class provides two methods that will
change the case of a character.

Method Description
char toLowerCase (Returns the lowercase equivalent of the
char ch) | grgument passed to ch.
char toUpperCase | Returns the uppercase equivalent of the
char ch) 1 argument passed to ch.

« See example: CircleArea.java

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Substrings

* The String class provides several methods that search
for a string inside of a string.

* A substring is a string that is part of another string.

« Some of the substring searching methods provided by
the String class:

boolean
boolean
boolean

boolean

@ Pearson

startsWith (String str)

endsWith (String str)

regionMatches (int start, String str, int startZ,
int n)

regionMatches (boolean ignoreCase, int start,
String str, int startZ2, int n)

Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Searching Strings (1 ors)

* The startsWith method determines whether a string
begins with a specified substring.

String str = "Four score and seven years ago";
if (str.startsWith ("Four"))

System.out.println("The string starts with Four.");
else

System.out.println("The string does not start with
Four.");

e str.startsWith ("Four") returns true because str
does begin with “Four”.

* startsWith IS a case sensitive comparison.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Searching Strings ¢ ors)

* The endsWith method determines whether a string ends
with a specified substring.
String str = "Four score and seven years ago";
1f (str.endsWith ("ago"))
System.out.println("The string ends with ago.");

else
System.out.println("The string does not end with ago.");

* The endsWith method also performs a case sensitive
comparison.

- Example: PersonSearch.java

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Searching Strings ¢ ors)

* The string class provides methods that will if specified
regions of two strings match.

— regionMatches (1nt start, String str, 1int
start?Z2, 1int n)

= returns true if the specified regions match or false
if they don't
= Case sensitive comparison

— regionMatches (boolean ignoreCase, 1int
start, String str, 1int startZ, 1int n)

« If ignoreCase is true, it performs case insensitive
comparison

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Searching Strings @ ors)

* The String class also provides methods that will locate
the position of a substring.

— 1ndexOf

= returns the first location of a substring or character
in the calling String Object.

— lastIndexOf

* returns the last location of a substring or character
in the calling String Object.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Searching Strings ¢ ors)

String str = "Four score and seven years ago";
int first, last;
first = str.indexOf('xr');

last = str.lastIndexOf('xr');
System.out.println("The letter r first appears at "

+ "position " + first);
System.out.println("The letter r last appears at "
+ "position " + last);
String str = "and a one and a two and a three";

int position;
System.out.println("The word and appears at the "
+ "following locations.");

position = str.indexOf ("and");
while (position != -1)
{
System.out.println (position);
position = str.indexOf ("and", position + 1);

}

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Table 9-4 String Methods for Getting
Character or Substring Location (1 of2)

Method

Description

int indexOf (char ch)

int indexOf(char ch, int start)

int indexOf(String str)

int indexOf(String str, int start)

Searches the calling String object for the character
passed into ch. If the character is found, the position
of its first occurrence is returned. Otherwise,

21 is returned.

Searches the calling String object for the character
passed into ch, beginning at the position passed
into start and going to the end of the string. If the
character is found, the position of its first occurrence
is returned. Otherwise, 21 is returned.

Searches the calling String object for the string
passed into str. If the string is found, the beginning
position of its first occurrence is returned. Otherwise,
21 is returned.

Searches the calling String object for the string
passed into str. The search begins at the position
passed into start and goes to the end of the
string. If the string is found, the beginning position
of its first occurrence is returned. Otherwise, 21

is returned.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Table 9-4 String Methods for Getting
Character or Substring Location (2or2)

Method Description

int lastIndexOf(char ch) Searches the calling String object for the character
passed into ch. If the character is found, the position
of its last occurrence is returned. Otherwise,
21 is returned.

int lastIndexOf (char ch, int start) Searches the calling String object for the character
passed into ch, beginning at the position passed
into start. The search is conducted backward
through the string, to position 0. If the character is
found, the position of its last occurrence is returned.
Otherwise, 21 is returned.

int lastIndexOf (String str) Searches the calling String object for the string
passed into str. If the string is found, the beginning
position of its last occurrence is returned. Otherwise,
21 is returned.

Searches the calling String object for the string

. passed into str, beginning at the position passed
int start) into start. The search is conducted backward
through the string, to position 0. If the string is
found, the beginning position of its last occurrence
is returned. Otherwise, 21 is returned.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

int lastIndexOf(String str,

Extracting Substrings (i or2)

* The String class provides methods to extract substrings
In a String object.
— The substring method returns a substring

beginning at a start location and an optional ending
location.

String fullName = "Cynthia Susan Smith";
String lastName = fullName.substring(14);
System.out.println("The full name 1is "

+ fullName) ;
System.out.println("The last name 1is "

+ lastName) ;

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Extracting Substrings (o2

The fullName variable

holds the address of a
String object.

Address » “Cynthia Susan [Smith”
The 1astName variable
holds the address of a
String object.

Address » “Smith”

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Extracting Characters to Arrays

* The String class provides methods to extract substrings
In @ String object and store them in char arrays.

— getChars

= Stores a substring in a char array
— toCharArray

» Returns the String object’'s contents in an array
of char values.

- Example: StringAnalyzer.java

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Returning Modified Strings

 The String class provides methods to return modified
String objects.

— concat

= Returns a String object that is the concatenation of
two String objects.

— replace

* Returns a String object with all occurrences of one
character being replaced by another character.

— trim
= Returns a String object with all leading and trailing
whitespace characters removed.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

The valueOf Methods (1012

 The String class provides several overloaded valueOf
methods.

* They return a String object representation of

— a primitive value or
— a character array.

String.valueOf (true) will return "true".
String.valueOf (5.0) will return "5.0".
String.valueOf ('C’) will return "C".

Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

The valueOf Methods 2 or2)

boolean b true;

char [] letters = { 'a', '
double d 2.4981567;

int 1 = 7;
System.out
System.out
System.out
3)) 7
System
System

.println (String.
.println (String.
.println (String.

.out
.out

.println (String.
.println (String.

* Produces the following output:

true
abcde
bcd
2.49815067

7
@ Pearson

valueOf (b)) ;
valueOf (letters)) ;
valueOf (letters, 1,

valueOf (d)) ;
valueOf (1)) ;

Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

9.4 The StringBuilder Class

* The StringBuilder class is similar to the String
class.

- However, you may change the contents of
StringBuilder objects.

— You can change specific characters,
— insert characters,

— delete characters, and

— perform other operations.

A StringBuilder object will grow or shrink in size, as
needed, to accommodate the changes.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

StringBuilder Constructors

e StringBuilder ()

— This constructor gives the object enough storage space to
hold 16 characters.

« StringBuilder (int length)

— This constructor gives the object enough storage space to
hold 1ength characters.

« StringBuilder (String str)
— This constructor initializes the object with the string in st r.

— The object will have at least enough storage space to hold
the string in str.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Other StringBuilder Methods (103

* The String and StringBuilder also have common
methods:

char charAt (int position)

void getChars (int start, int end,
char[] array, 1int arrayStart)

int 1indexOf (String str)

int 1ndexOf (String str, 1nt start)

int lastIndexOf (String str)

int lastIndexOf (String str, 1nt start)

int length ()

String substring(int start)

String substring(int start, int end)

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Appending to a StringBuilder
Object (104

 The StringBuilder class has several overloaded versions
of a method named append.

« They append a string representation of their argument to the
calling object’s current contents.

* The general form of the append method is:
object.append (item) ;

— where object is an instance of the StringBuilder
class and itemis:

= a primitive literal or variable.

= a char array, or
= a String literal or object.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Appending to a StringBuilder Object

of 4)

- After the append method is called, a string representation of
item will be appended to object’s contents.

StringBuilder str = new StringBuilder () ;
str.append("We sold ") ;

str.append (12);
(
(

str.append (" doughnuts for $");
str.append (15.95) ;

System.out.println(str);

* This code will produce the following output:
We sold 12 doughnuts for $15.95

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Appending to a StringBuilder
Object of4)

 The StringBuilder class also has several overloaded
versions of a method named insert

* These methods accept two arguments:

— an int that specifies the position to begin insertion,
and

— the value to be inserted.

* The value to be inserted may be

— a primitive literal or variable.
— a char array, or

— a String literal or object.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Appending to a StringBuilder
Object o4

* The general form of a typical call to the insert method.

— object.1insert (start, 1item);

= where object is an instance of the
StringBuilder class, start is the insertion
location, and itemis:

—a primitive literal or variable.
—a char array, or

—a String literal or object.

- Example:
Telephone.java
TelephoneTester.java

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Replacing a Substring in a StringBuilder
Object (10r2)

 The StringBuilder class has a replace method that
replaces a specified substring with a string.

« The general form of a call to the method:
— object.replace(start, end, str);

= start is an int that specifies the starting position of a
substring in the calling object, and

= end is an int that specifies the ending position of the

substring. (The starting position is included in the
substring, but the ending position is not.)

= The str parameteris a String object.

— After the method executes, the substring will be replaced
with str.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Replacing a Substring in a StringBuilder
Object 2 or2)

* The replace method in this code replaces the word
“Chicago” with “New York”.

StringBuilder str = new StringBuilder (

"We moved from Chicago to Atlanta.");
str.replace (14, 21, "New York");
System.out.println(str);

* The code will produce the following output:

We moved from New York to Atlanta.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Other StringBuilder Methods 2 of3)

 The StringBuilder class also provides methods to set and delete
characters in an object.

StringBuilder str = new StringBuilder (
"I ate 100 blueberries!");

// Display the StringBuilder object.

System.out.println(str);

// Delete the '0'.

str.deleteCharAt (8) ;

// Delete "blue".

str.delete (9, 13);

// Display the StringBuilder object.

System.out.println(str);

// Change the 'l' to '5'

str.setCharAt (6, '5');

// Display the StringBuilder object.

System.out.println(str);

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Other StringBuilder Methods ;of3)

 The toString method

— You cancalla StringBuilder's toString method
to convert that StringBuilder object to a regular
String

StringBuilder strb = new StringBuilder ("This is a test.");
String str = strb.toString();

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

9.5 Tokenizing Strings

* Use the string class’s split method
« Tokenizes a String object and returns an array of String objects

« Each array element is one token.

// Create a String to tokenize.
String str = "one two three four";
// Get the tokens from the string.
String[] tokens = str.split(" ");

// Display each token.
for (String s : tokens)
System.out.println(s);

* This code will produce the following output:

one
two
three
four

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Numeric Data Type Wrappers

 Java provides wrapper classes for all of the primitive data
types.

* The numeric primitive wrapper classes are:

Wrapper Numeric Primitive
Class Type It Applies To

Byte byte
Double double
Float float

Integer |int

Long long

Short short

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Creating a Wrapper Object

» To create objects from these wrapper classes, you can
pass a value to the constructor:

Integer number = new Integer(7);

* You can also assign a primitive value to a wrapper class
object:

Integer number;
number = 7/;

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

The Parse Methods ¢ of2)

« Recall from Chapter 2, we converted String input (from
JOptionPane) into numbers. Any String containing a number,
such as “127.89", can be converted to a numeric data type.

* Each of the numeric wrapper classes has a static method that
converts a string to a number.

— The Integer class has a method that converts a String to an
int,

— The Double class has a method that converts a String to a
double,

— etc.

* These methods are known as parse methods because their names
begin with the word “parse.”

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

The Parse Methods 2 or2)

// Store 1 in bVar.

byte bVar = Byte.parseByte ("1");

// Store 2599 in iVar.

int 1Var = Integer.parselInt ("2599");
// Store 10 in sVar.

short sVar = Short.parseShort ("10");
// Store 15908 in 1lVar.

long 1lVar = Long.parselong("15908");
// Store 12.3 in fVar.

float fVar = Float.parseFloat("12.3");
// Store 7945.6 in dvVar.

double dVar = Double.parseDouble ("7945.6");

* The parse methods all throw a NumberFormatException if
the String object does not represent a numeric value.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

The toString Methods

« Each of the numeric wrapper classes has a static
toString method that converts a number to a string.

* The method accepts the number as its argument and
returns a string representation of that number.

int 1 = 12;

double d = 14.95;

String strl = Integer.toString (i) ;
String str2 = Double.toString(d);

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

The toBinarystring, toHexstring, and
roOctalstring Methods

* The Integer and Long classes have three additional
methods:

— toBinaryString, toHexString, and
toOctalString

int number = 14;

System.out.println (Integer.toBinaryString (number)) ;
System.out.println(Integer.toHexString (number))
System.out.println(Integer.toOctalString (number)) ;

» This code will produce the following output:
1110

e
16

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

MIN VALUE and MAX VALUE

* The numeric wrapper classes each have a set of static final
variables

— MIN VALUE and
— MAX VALUE.

* These variables hold the minimum and maximum values for a
particular data type.

System.out.println ("The minimum value for an "
+ "1nt 1s "
+ Integer.MIN VALUE) ;
System.out.println ("The maximum value for an "
+ "1nt 1is "
+ Integer.MAX VALUE) ;

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Autoboxing and Unboxing (i or2)

* You can declare a wrapper class variable and assign a
value:

Integer number;
number = 7;

* You nay think this is an error, but because number is a wrapper class
variable, autoboxing occurs.

- Unboxing does the opposite with wrapper class variables:
Integer myInt = 5; // Autoboxes the value 5

int primitiveNumber;
primitiveNumber = myInt; // unboxing

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Autoboxing and Unboxing (2 or2)

* You rarely need to declare numeric wrapper class
objects, but they can be useful when you need to work
with primitives in a context where primitives are not
permitted

* Recall the ArrayList class, which works only with
objects.

ArrayList<int> list =

new ArrayList<int> () ; // Error!
ArrayList<Integer> list =

new ArrayList<Integer>(); // OK!

 Autoboxing and unboxing allow you to conveniently use

ArrayLists with primitives.
@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Problem Solving

 Dr. Harrison keeps student scores in an Excel file. This
can be exported as a comma separated text file. Each
student’s data will be on one line. We want to write a
Java program that will find the average for each student.
(The number of students changes each year.)

+ Solution: TestScoreReader.java, TestAverages.java

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Copyright

This work is protected by United States copyright laws and is provided solely
for the use of instructors in teaching their courses and assessing student
learning. Dissemination or sale of any part of this work (including on the
World Wide Web) will destroy the integrity of the work and is not permit-
ted. The work and materials from it should never be made available to
students except by instructors using the accompanying text in their

classes. All recipients of this work are expected to ahide by these
restrictions and to honor the intended pedagogical purposes and the needs of
other instructors who rely on these materials.

@Pearson Copyright © 2016, 2013, 2010 Pearson Education, Inc. All Rights Reserved

