
Speeding	Up	Maximal	Causality	Reduction
with	Static	Analysis

1

Shiyou	Huang Jeff	Huang
huangsy@tamu.edu

Parasol	Lab,	Texas	A&M	University

Maximal	Causality	Reduction	(MCR)

2

MCR

+ No	redundancy
+ Sound	and	Complete
+ More	efficient	than	DPOR1 and	ICB2

- Purely	Dynamic,	#constraints	
cubic	in	trace	size
-Without	considering	input	
non-determinism

(Huang,	PLDI’15)

1.	DPOR:	Flanagan	and	Godefroid,	PLDI’05
2.	ICB:	Musuvathi ,	OSDI’08

Concurrent	Program
Verification	is	Hard

Huge
Interleaving

Space

Stateless
Model	Checker

Under	the	given	input

Maximal	Causality	Reduction	(MCR)

3
(Huang,	PLDI’15)

Ø Trace:	A	sequence	of	events	executed	by	
the	program

Ø Constraints:	An	order	variable	(O)	for	
each	event	in	the	trace
E.g.,	if	e1	happens	before	e2,	!"# < !"%

Ø Interleaving:	A	sequence	of	thread	
schedule	

Constraints	Model	-- &(()

4

Ø must-happen-before(∅+,-)
E.g.,	!1 < !2 if	e1	and	e2	are	by	the	same	thread,	and	e1	occurs	before	e2	

Ø lock-mutual-exclusion(∅0123)
E.g.,	for	a	lock	pair,	(41, 61)	and	(42, 62),	!8# < !9% ∨ !8% < !9#

Ø validity(∅;<0=>=?@)
an	event	is	feasible	if	every	read	that	must-happen-before	it	returns	the	
same	value

Ø new state(∅A?<?B)
At	least	one	read	in	? returns	a	different	value	

Ω D = FGHI ∧ F9KLM ∧ FNO9PQPRS ∧ FTROR"

An	Example

5

T1
1:	r1=y
2:	if (x==0)
3:	 r2=x

T2
4:	x=1
5:	y=1

Possible	schedules:
1. 1-2-3-4-5
2. 1-2-4-3-5
3. 1-4-5-2
4. …

S0:	1-2-3-4-5,		r1 = r2 = 0, WX6Y ≡ [== 0

e1

e2

e3
e4

hb

rf

\]: 				Y1 ≺ Y2 ≺e3,	e4≺e5	
`DaDY: Y3 ≺ Y4	

Constraints:
4-1-2-3-5

da4efeDg: Y1 ≺ Y5, Y2 ≺ Y4	

e5

1-2-4-3-5 �

�

return	the	same	
value	as	that	in	S0
to	enforce	
WX6Y ≡ [== 0hb

hb

Init:	x=y=0

ia4jY ≡ [== 0

r2=x
x=1

Validity	Constraints

6

2. Solving the formula by an SMT solver, and building a
new seed interleaving from the solution.

Next, we describe the first step in Section 2.3 and illustrate
the second step using an example in Section 2.4.

2.3 Constraint Encoding of MCR
For each event in the given trace ⌧ , MCR creates an order
variable O denoting its order in a certain feasible trace in
MaxCausal(⌧). MCR then encodes MaxCausal(⌧) into a for-
mula �mc consisting of three types of first-order logical con-
straints over the order variables O: (1) must-happen-before
constraints (�mhb); (2) lock-mutual-exclusion constraints
(�lock); (3) data-validity constraints (�validity). �mc is then
conjoined with a new state constraint �state to generate a
final formula � that is used to produce a seed interleaving.

Must-happen-before (MHB) constraints (�mhb). The
�mhb constraint ensures a minimal set of happens-before
relations that events in any feasible interleaving must obey. It
requires that (1) All events by the same thread should happen
in the program order (obeying SC); (2) The begin event of
a thread should happen after the fork event that starts the
thread; (3) A join event for a thread should happen after the
last event of the thread.

Lock-mutual-exclusion constraints (�lock). The �lock

constraint ensures that events guarded by the same lock
are mutually exclusive. It is constructed over the ordering of
the lock and unlock events. More specifically, for each lock,
MCR extracts all the lock/unlock pairs of events following the
program order and constructs the following constraints for
each two pairs (l1, u1) and (l2, u2): Ou1 < Ol2 _Ou2 < Ol1 .

Data-validity constraints (�validity). The �validity con-
straint ensures that all events in any trace in MaxCausal(⌧)
are feasible. For an event e to be feasible, all events that
must-happen-before e must be feasible, and every read event
that e depends on (excluding e itself) should read the same
value as it reads in ⌧ . Let �e denote the set of events that
must-happen-before an event e, and consider a read event
r=read(t,x,v) in �e on a memory address x with value v by
thread t. Let W x denote the set of all writes to x, and W

x
v

the set of writes to x with value v, the �validity constraint for
e is encoded as

V
r2�e

�value(r, v), where �value(r, v) is the

state constraint that ensures r to read a value v:

�value(r, v) ⌘
W

w2Wx
v

(�validity(w) ^Ow < Or

V
w 6=w02Wx

(Ow0 < Ow _Or < Ow0))

New state constraints (�state). The key idea for MCR to
eliminate redundant executions is enforcing at least one read
event in each explored execution to read a new value so that
no two executions reach the same state. MCR enumerates
each read event in ⌧ on the set of all values by the writes on
the same memory address. For each value that is different

Initially: x = y = 0

Thread1: Thread2:

1: x = 1
2: a = y

3: y = 1
4: b = x

assert (a == 1 || b == 1)

Initially: x = y = 0

Thread1: Thread2:

1: x = 1
2: y = 1

3: if (y == 1)
4: if (x == 0)

 5: ERROR

(a) A TSO example Initially: x = y = 0

Thread1: Thread2:

1: x = 1
2: a = y

3: y = 1
4: b = x

assert (a == 1 || b == 1)

Initially: x = y = 0

Thread1: Thread2:

1: x = 1
2: y = 1

3: if (y == 1)
4: if (x == 0)

 5: ERROR

(b) A PSO example

Figure 3: (a) shows a program with error under TSO, but
correct under SC; (b) shows a program with error under PSO,
but correct under SC and TSO.

from what it reads in ⌧ , a new state constraint is generated to
ensure the read event to read the new value. Consider a read
r=read(t,x,v) on x with value v, and a value v

0 6= v written
by any write on x, �state is written as �value(r, v0). Since
all such state constraints are generated, MCR ensures that
no non-equivalent interleaving is missed. Hence, the entire
state-space will be covered systematically by MCR.

2.4 Example
We use the example in Figure 3(a) to illustrate MCR. The
program has 6 different executions (3 are redundant) under
SC, but 24 different executions under TSO (20 are redundant).
MCR is able to explore all the state-space under SC via only
3 executions, but it fails to expose the assertion violation that
is only possible under TSO.

Let ei denote the event at the line number i. Given a
trace ⌧ = he1, · · · , eni, MCR uses n integer variables
hO1, · · · , Oni to denote the order in which the events happen
in a certain execution. The value of Oi represents the position
of ei in a trace. If Oi < Oj , then ei will be executed before
ej in the generated interleaving.

Suppose in the initial execution, MCR obtains the trace
⌧0 = he1, e2, e3, e4i under SC, and the program reaches
the state (a=0,b=1). MCR constructs the MHB constraints
�mhb = O1 < O2 ^O3 < O4. Since the trace contains two
reads, e2 (R(y)=0) and e4 (R(x)=1), to generate new seed
interleavings, MCR tries to enforce each of the two reads to
read a different value in future executions. For example, for
e2, it adds the new state constraint �value = O3 < O2

to enforce R(y) to read value 1 (written by e3) instead
of 0. By solving this constraint conjoined with �mhb, the
SMT solver will return a solution such as {O1 = 1, O2 =
3, O3 = 2}. From this solution, MCR will generate a new
seed interleaving e1-e3-e2 because O1 < O3 < O2. By
re-executing the program following this seed interleaving,
MCR obtains a new trace ⌧1 = he1, e3, e2, e4i and reaches
a new state (a=1,b=1). Then the exploration along this seed
interleaving is finished because there is no new value that can
be read by any read event in ⌧1. Similarly, the read event e4 in
⌧0 generates a new seed interleaving e3-e4, which produces
a new trace ⌧2 = he3, e4, e1, e2i that reaches a new state
(a=1,b=0).

63:6 Speeding Up Maximal Causality Reduction with Static Dependency Analysis

i n i t i a l l y x = y = 0 ;

thread 1 : thread 2 :

1 : i f (x==0) /� r1 (x) �/ 3 : x = 1 ; /�w(x) �/

2 : r = x ; /� r2 (x) �/

Suppose initially the program is executed in the order, e1 ≠ e2 ≠ e3, and the program reaches
the state r1(x) = 0 and r2(x) = 0. To make r2(x) return the value 1 written by w(x), MCR
enforces �state = O3 < O2 so that e3 happens before e2. By conjoining with �mhb = O1 < O2,
the solver reports a possible solution O3 = 0, O1 = 1, O2 = 2, corresponding to a concrete
schedule e3 ≠ e1 ≠ e2. However, this schedule is infeasible because the if predicate is not
satisfied under this schedule, and hence e2 cannot be executed. To ensure the reachability of
an event, MCR encodes the data-validity constraints into the formula. In a word, all the
reads that happen before the considered event should hold the same value as that in the
prior execution. In this example, when we consider the value of r2(x), we need to guarantee
that r1(x) = 0. Then a correct schedule that makes r2(x) = 1 is e1 ≠ e3 ≠ e2. Let ªe denote
the set of events that must-happen-before an event e and r = read(t,x,v) denote a read
event in ªe on a memory location x with value v by thread t. Let W

x denote the set of all
writes to x, and W

x
v

the set of writes to x with value v, the data-validity constraint for e is
encoded as

�validity =
w

rœªe

�value(r, v),

where �value(r, v) is the state constraint that ensures r to read a value v:

�value(r, v) ©
x

wœW x
v

(�validity(w) · Ow < Or

w
w ”=wÕœW x

(OwÕ < Ow ‚ Or < OwÕ))

This constraint is complex because it is recursive. As we can see, to match a read r with a
write w, MCR also needs to ensure the reachability of w, which requires all the reads that
must-happen-before w should return the same value. It means we also need to construct
constraints to match those reads with specific writes. Unfortunately, as most events in a
trace are read or write, it can be very expensive to make all the reads in ªe return the
same value. The second observation of this work is that some reads in ªe actually do not
influence the reachability of e so that we can remove them from ªe to reduce the size of
the constraints. For example, for two reads r1-r2 executed by the same thread, there is
no need to consider the value returned by r1 when constructing �validity(e) because there
is no dependency between the two reads. Our idea for reducing the size of �validity is to
only enforce the reads in ªe, which the event e is control dependent on, to return the same
value. To achieve this idea, we use static analysis on the source code of the program – system
dependency graph, to compute the dependencies between two events. Next we first introduce
the knowledge of system dependency graph in Section 3.2 and then present the details of our
approach in Section 4.

3.2 System Dependency Graph
The system dependency graph (SDG) for a program P, denoted by Gp = (N, E), is a directed
graph, where the nodes in N represent the statements or predicates in P and the edges in E

represent the dependencies between the nodes [15]. Figure 2 presents an SDG of a concrete
program, which includes a procedure call add in the main procedure. An SDG is made of
the procedure dependency graphs (PDGs), which model the system’s procedures. In a PDG,

FNO98" X, k enforces	r returns	the	value	v

≺" :	set	of	events	that	happen	before	e
lNm :	set	of	writes	that	write	value	v to	a	variable,	x
lm :	set	of	writes	that	write	other	values	to	x

Ø every	read	r
before	e,	return	
the	same	value	v

Ø match	r to	a	write	
that	writes	the	
value	v to	the	
same	location

Limitations

7

Most	events	are	reads	and	writes	in	a	trace

Ø Complicated	constraints,	cubic in	the	size	of	the	trace

Just	a	few	reads	influence	the	reachability	of	a	later	event

Ø Construct	unnecessary	constraints

T1
1:	r1=y
2:	if (x==0)
3:	 r2=x

T2
4:	x=1
5:	y=1

�r1=y,	x==0
hb

Our	Approach

8

Trace
Ordering	
Constraints

More	
Schedules
run

r1

r2

r3

r4

r5

events	happen	before	r5:	
r1,	r2,	r3,	r4	

r5	depends	on:	
r1,	r2,	r3,	r4	

dependency	
analysis

FNO9PQPRS X5 =
FNO98" X1, k ∧
FNO98" X4	k′ ∧
FNO98" X2, ko ∧
FNO98"(k3, ko)

Reduced

Our	Approach

9

Trace
Ordering	
Constraints

More	
Schedules
run

r1

r2

r3

r4

r5

events	happen	before	r5:	
r1,	r2,	r3,	r4	

r5	depends	on:	
r1,	r2,	r3,	r4	

dependency	
analysis

FNO9PQPRS X5 =
FNO98" X1, k ∧
FNO98" X4	k′

MCR	+	Static	Dependency	Analysis

System	Dependency	Graph	(SDG)

S. Huang and J. Huang 63:7

Figure 2 The System Dependency Graph of a concrete program, where the dependencies are

distinguished by di�erent edges.

all the nodes are connected by either control dependency edges or data dependency edges.
A node m is control dependent on the node n if the evaluation of n controls the execution
of m. The source of a control dependency edge is either an enter node or a predicate node.
A data-dependency between two nodes indicates that the program’s computation might be
changed if the relative order of the two events represented by the two nodes are reversed. In
the SDG, all the PDGs are connected by the edges between the call sites nodes and the enter
nodes of the called procedures. For example, in Figure 2, there exists a procedure call add in
the main procedure. The two PDGs are connected by a call edge from call add node to the
entry node Enter add of the procedure add. In SDG, for each parameter passing, there exists
an actual-in node and formal-in node, which are connected by a parameter-in edge. For
instance, when passing parameter x to the procedure add, the actual-in node x_in=sum is
connected to the formal-in node x=x_in by a parameter-in edge (the dashed arrow). For each
modified parameter and returned value, there also exists a parameter-out edge connecting the
formal-out node and the actual-out node. Formal-in and -out nodes are control dependent
on the entry node and the Actual-in and -out nodes are control dependent on the call node.
The SDG permits us to analyze the dependency between two events presented by nodes in
the graph by traversing the graph.

4 Our Approach

This section introduces how our approach leverages the SDG to reduce the data-validity
constraints (�validity). We first present the overall algorithm and then the detailed dependency
analysis.

ECOOP 2017

10

Pr ocedur e mai n()
sum = 0;
i = 1;
whi l e i <11:

sum = add(sum, i) ;
i = i +1;

Pr ocedur e add(x, y)
x = x+y;
r et ur n x ;

Control	Dependency

11

(a) (b)

i f (x==1)

 . . .

r = y

l ocal a=x

i f (a==1)

 . . .

r = y

(c)

i f (f unc)

ent er
f unc()

r = y

ret_out

r et ur n x

. . .
x=1

(d)

f unc ()

ent er
f unc()

r = y

ret_exc

cr ash

i f (x==1)

 Control Dependency
 Data Dependency

 Procedure Call

 Parameter In/Out

Edge key

 Derived Dependency

(a) (b)

i f (x==1)

 . . .

r = y

l ocal a=x

i f (a==1)

 . . .

r = y

(c)

i f (f unc)

ent er
f unc()

r = y

ret_out

r et ur n x

. . .
x=1

(d)

f unc ()

ent er
f unc()

r = y

ret_exc

cr ash

i f (x==1)

 Control Dependency
 Data Dependency

 Procedure Call

 Parameter In/Out

Edge key

 Derived Dependency

(a) (b)

Case	a: an	event	is	directly	depends	
on	a	read	operation	evaluated	by	an	if	
predicate

[== 1
ppqrp

X = g

Case	b: the	dependency	may	be	
transmitted	via	a	data	dependency

a = [
ppqppqrp

X = g

Control	Dependency

12

(a) (b)

i f (x==1)

 . . .

r = y

l ocal a=x

i f (a==1)

 . . .

r = y

(c)

i f (f unc)

ent er
f unc()

r = y

ret_out

r et ur n x

. . .
x=1

(d)

f unc ()

ent er
f unc()

r = y

ret_exc

cr ash

i f (x==1)

 Control Dependency
 Data Dependency

 Procedure Call

 Parameter In/Out

Edge key

 Derived Dependency

(a) (b)

i f (x==1)

 . . .

r = y

l ocal a=x

i f (a==1)

 . . .

r = y

(c)

i f (f unc)

ent er
f unc()

r = y

ret_out

r et ur n x

. . .
x=1

(d)

f unc ()

ent er
f unc()

r = y

ret_exc

cr ash

i f (x==1)

 Control Dependency
 Data Dependency

 Procedure Call

 Parameter In/Out

Edge key

 Derived Dependency

(c) (d)

Case	c: the	evaluation	may	depend	on	
the	return	value	of	another	procedure

XYD6Xs	[
tuqppqppqrp

X = g

Case	d: the	read	may	depend	on	a	if	
predicate	in	a	different	procedure

[== 1
rpqrpqrpqrp

X = g

Control	Dependency

13

23:10 Speeding Up Maximal Causality Reduction with Static Dependency Analysis

		"1	$%	"2		Û		"1	 '
∗)* "2,	

				+	 ∶= 	".//		
|01	 11	 23	|25	|06	

	
Figure 4 Rule 1: the condition that a node has control dependency on another in SDG.

4.2.2 Data Dependency
So far we have only considered the control dependency of the nodes. In this Section, we will
point out that under some cases, the reads on which an event is data dependent on should
also be added to the read set ªD

·
(e) . Recall that when MCR maps a read to a certain

write w, the data validity constraints in Section 2 also ensures the reachability of w. We have
illustrated in Section 4.2.1 that to ensure the reachability of an event e in the trace · , we
only need to ensure the reads in ªD

·
(e) to return the same value. However, we also need to

guarantee that the value written by w matches with the one expected by the read in ªD
·

(e).
Take the following program as an example.

i n t x = y = 0 ;

// thread 1 : // thread 2 : // thread 3 :

1 : r = y ; /� r1 (x) �/ 2 : x = 1 ; /�w1(x) �/ 4 : x = 2 ; /�w2(x) �/

3 : y = x ; /�w(y) , r2 (x) �/

Suppose initially the program is executed along the program order: 1-2-3-4. The state
of the program is r1(y) = 0 and r2(x) = 1. Next, to make r(y) = 1 (return the value of
w(y)), we encode O3 < O1. Because there is no event that is control dependent on a read
in this program, we do not consider the data-validity constraints. Then a feasible schedule
by our constraints can be 2-4-3-1, making r1(y) = 2 and r2(x) = 2 instead of r1(y) = 1.
The reason for this is that the write w(y) is data dependent on the read r2(x). Because our
constraints only ensure the reachability of w(y), the value written to w(y) can be any one
returned by r2(x).

To address this problem, we enforce the read r that happens before a write w and w is
data dependent on to return the same value, implying that we add such a read to ªD

·
(e).

Similar to ”
c, we notate the data dependency between two events as ”

d: given two nodes n1
and n2 in an SDG, we use n1 ”

d
n2 to denote that n2 is data dependent on n1. Then we

can derive the data dependency rule following the spirit of Rule 1. Given an event e and a
read r, to check r ”

d
e is equivalent to check that if there is a path p ending with a data

dependency edge from r to e, and each edge e in p belongs to one of CD, DD, PI, PO and
CALL. We present the rule in Figure 4.

		"1	$%	"2		Û		"1	 '
∗)) "2,	

				*	 ∶= 	"-..		
|/0	 00	 12	|14	|/5	

	
Figure 5 Rule 2: the condition that a node has data dependency on another in SDG.

4.2.3 Dependency Reads Computation
After the discussion about the control and data dependency we now present the algorithm of
the function DependencyComputation() in Algorithm 1 to give the details about how to
compute the set of reads that an event is dependent on in the program.

Definition:	given	two	nodes	n1	and	n2	in	an	SDG,	we	use	
n1	vLn2	to	denote	that	n2	is	control	dependent	on	n1	

CD:	control	dependency
DD:	data	dependency
PI/O:	parameter	in/out
CL:	call

Constraints	Reduction

63:8 Speeding Up Maximal Causality Reduction with Static Dependency Analysis

4.1 Constraints Reduction
The essential idea for reducing �validity is to reduce the number of the reads that are required
to return the same value by MCR. We begin with the definition of the set of reads that an
event is control dependent on to help illustrate the algorithm.

I Definition 1. Given an event e in a trace · , ª· (e) denotes the set of the reads that
must-happen-before e, and ªD

·
(e) ™ ª· (e) denotes the set of reads that e is dependent on.

The main algorithm of our approach is presented as follows.

Algorithm 1: �validity(e) Reduction
Input : · - a trace and e - a given event in ·

Output : �validity(e) - data-validity constraints related to e

1 �validity = ÿ
2 ª· (e) Ω Happens-before(· , e)
3 ªD

·
(e) Ω DependencyComputation(ª· (e), e)

4 foreach read r œªD
·

(e) with value v do
// �value(r, v) recursively call DataValidityConstraints ()

5 �validity · = �value(r, v)
6 end
7 return �validity

Algorithm 1 shows how to compute data-validity constraints of a given event e. It takes
as input the current executed trace · and the considered event e. It first computes the
set of reads that must-happen-before e (line 2) based on the constraints �mhb in Section
2. Then our algorithm computes a subset of reads ªD

·
(e) ™ª· (e), and all the reads

in ªD
·

(e) have a dependency on e (line 3). We will give the details of the function
DependencyComputation() in Section 4.2.3. The algorithm finally enforces that all
the reads return the same value as that in the current trace · according the encoding of
�value(r, v). The detailed expression of �value(r, v) is presented in Section 3.1.

Because the number of the reads in ª· (e) that e is dependent on takes a small
portion of the total number of the reads in ª· (e), our algorithm reduces the size
of �validity greatly. Meanwhile, the reduction will not lead to the missing of any
executions explored by MCR.

Proof. To prove the correctness of this approach, it only needs to prove that our new
constraints model �Õ

validity
is equivalent to �validity presented in Section 2 and 3.1 because

all the rest part of �mc remain the same. Consider a trace · = e1, e2, · · · , en. To guarantee
the reachability of an event ei œ · in a new schedule, we only need to make a read event
e œ · to return the same value and e is the last read that ei is control dependent on. Since e

is forced to return the same value, it guarantees that e is reachable and the path containing
ei is evaluated. Then no matter what values returned by the read between e and ei, ei is
always executed. Therefore, our algorithm will not cause any infeasible executions or miss
any executions.

4.2 Dependency Analysis
In this subsection, we present how we compute ªD

·
(e) based on the program’s SDG from

two parts, control dependency and data dependency. The insight for identifying that an event

14

Main	Idea:	
Only	enforce	reads	that	are	control-dependency	related	

to	return	the	same	value

Redundancy	Problem

15

S0:	1-2-3,				X1 = X2 = 1

e3

e2

e1

hb

rf

hb

T1 T2

MCR

T1
1:	x=1

T2
2:	r1=x
3:	r2=x

Init x=0

Since Y2 ≺ Y3, Y2 is enforced
to return value 1

r2	=	0 �

Redundancy	Problem

16

S0:	1-2-3,				X1 = X2 = 1

e3

e2

e1

hb

rf

hb

e3

e2

e1

hbAny	order

r2	=	0	
T1 T2 T1 T2

MCR Our	approach

T1
1:	x=1

T2
2:	r1=x
3:	r2=x

Init x=0

r2	=	0 �

Since Y3	 is not control
dependent on e2, e2 can read
from any writes

�

Solution	to	Redundancy	Problem

17

We	treat	the	events	into	two	categories:
1. target	read:	a	read	considered	to	see	a	different	value
2. other	events

63:14 Speeding Up Maximal Causality Reduction with Static Dependency Analysis

shadowed box represents the read we consider. As we can see in Figure 6(b), x = 1 and
r2 = x can be in any order by our approach, while x = 1 happens before r2 = x in MCR.

5.1 Redundancy Elimination
According to the analysis on the example presented in Listing 2, we observe that when MCR
explores the new values that a considered read r can return, enforcing all the reads that
happen before r, on the one hand, guarantees the reachability of r and on the other hand,
restricts the writes that r can read from. But for the rest of the reads and writes, we are
only concerned about the reachability of them. We address the redundancy problem by
adding constraints to make all the reads that happen before r return the same value. This is
a trade-o� between the original MCR and Algorithm 1. We present our algorithm as follows.

Algorithm 3: DataValidityConstraintsÕ(·, e)
Input : · - a trace and e - a given event in ·

Output : �validity(e) - data-validity constraints related to e

1 �validity = ÿ
2 ª· (e) Ω Happens-before(· , e)

// target read: read considered to return new values
3 if e is not a target read then
4 ªD

·
(e) Ω DependencyComputation(ª· (e), e)

5 end
6 foreach read r œªD

·
(e) with value v do

// �value(r, v) recursively call DataValidityConstraints ()
7 �validity · = �value(r, v)
8 end
9 return �validity

The only di�erence between Algorithm 3 and Algorithm 1 lies in line 3. In our new
algorithm, we decide whether to add the reads that happen before e to ªD

·
(e) based on the

type of e. If e is a read expected to return a new value, we put all the reads that happen
before e into ªD

·
(e) to avoid the redundant behavior. For the example, in Listing 2, as we

want to explore what values r2(x) can read, we also put r1(x) into ªD
·

(e) to make r1(x)
return the same value as that in ·0 so that ·

Õ
1

will not be generated by our approach. If e is
an event that we only care about if it will be reached in the next schedule, we handle e in the
way of Algorithm 1. Although this expands ªD

·
(e) and increases the size of the constraints,

it still generates less constraints than MCR does but with no redundancy. Moreover, if the
solving of the constraints takes much more time than what the execution of the program
needs, we can keep the redundant executions to reduce the overall checking time. We will
have more discussions about this in Section 6.

Algorithm 3 can remove all the redundancies caused by Algorithm 1, and it will not
miss any executions.

Proof. The proof on the latter part follows the same analysis on Algorithm 1 in Section 4.1.
To prove that Algorithm 3 reduces all the redundancies, we show that by using Algorithm 3,
our approach explores the same executions as MCR does. Given a trace · , MCR considers
only one read r œ · each time when exploring new schedules. Consequently, the number of
the new executions derived from r depends on the number of the writes that r can read from
in · . Because we force all the reads that happen before r to return the same value as that in
· , which remains completely the same as how MCR handles such a read, r reads from the

Evaluation

18

ØDependency	analysis	using	JOANA1 [Graf]	and	WALA2

ØComparisons	with	MCR

• #reads/constraints	reduced

• solving	time	reduced

ØBenchmarks	[Huang,	PLDI’15]

1. Joana:	http://pp.ipd.kit.edu/projects/joana/	
2. Wala:		http://wala.sourceforge.net/wiki/index.php/Main_Page

Benchmarks	and	SDG

19

63:16 Speeding Up Maximal Causality Reduction with Static Dependency Analysis

Table 1 Benchmarks

Program time(s) memory(M) #nodes #edges

Counter 2.00 69 289 1,440

Airline 2.10 79 809 4,902

Pingpong 2.52 83 914 5,244

BubbleSort 2.14 81 911 5,710

Pool 3.67 75 2,848 17,586

StringBuf 2.96 111 2,129 12,310

Weblech 8.01 219 22,094 167,492

Derby 69.67 1,385 115,658 2,409,784

Benchmarks

To show the e�ectiveness improved by our hybrid analysis, we run our approach on the same
benchmark set used by prior work [16] so that we can make a direct comparison. Table 1
summarizes the benchmarks evaluated in this work. Counter is the example introduced in
Section 1, and we take Max = 5 during the evaluation. Airline is a program that can sell
more tickets than the capacity. Pingpong can arouse an NPE error on the shared variable
player. BubbleSort is a small but read-write intense program with more than 10 million
interleavings. Pool contains a concurrency bug in Apache Commons Pool causing more
instances than allowed in the pool. StringBuf contains an atomicity violation. Weblech
and Derby are two large real-world programs with long trace and complicated constraints.
We present the time and memory used to construct the program’s SDG in the second and
third column, respectively. The last two columns show the number of the nodes and edges in
the graph generated.

6.3 Reduction Analysis
Table 2 reports the results by MCR, MCR-S and MCR-S+ on the benchmarks. Column
#reads lists the number of the reads the three approaches considered totally when constructing
constraints to explore new interleavings. Column #constraints gives the total number of
data-validity (�validity) constraints that map a read to a certain write. The number is the
sum of the constraints generated by each exploration in the whole state-space search. As the
other constraints remain the same for MCR and the new approaches, we just discuss the
read-write constraints in the evaluation. Column time shows the time used by the solver to
solve the constraints.

Figure 7 presents the reduction results by MCR-S and MCR-S+ compared to MCR on
the number of the reads and constraints as well as the solving time. The figure is best viewed
in color. The blue bar represents the results by MCR, green for MCR-S and yellow for
MCR-S+, respectively. For comparison, we normalize MCR’s results to 1 as the baseline
and length of the green and yellow bars represents the ratio of the results of MCR-S and
MCR-S+ to that of MCR.

Number of reads reduced.

Figure 7(a) summarizes the comparison on the number of the reads reduced by MCR and
our approaches. Averagely, MCR-S reduces the number of the reads by 27.1% and MCR-S+
by 12.1% compared to MCR. And the reduction percentage by MCR-S ranges from 14.2%
to 51.3%, and MCR-S makes the greatest reduction on the Derby benchmark. Comparing

time memory

Avg. 11.6s 263M

Comparison	with	MCR

20

S. Huang and J. Huang 63:17

Table 2 Results of the number of the reads and constraints as well as solving time generated by

MCR, MCR-S and MCR-S+ to explore the state-space of the benchmarks, respectively. one hour.

Program MCR MCR-S MCR-S+
#reads #consts time(sec) #reads #consts time(sec) #reads #consts time(sec)

Counter 55,886 202,039 22.11 37,515 108,270 7.41 45,972 131,053 12.25
Airline 15,632 24,643 2.43 15,328 24,475 2.39 15,599 24,625 2.38

Pingpong 1,905 5,225 1.42 1,376 3,684 1.38 1,906 5,227 1.32
BubbleSort 5,583,561 3,487,802 679.27 3,574,528 2,158,422 546.75 5,087,528 3,046,852 586.42

Poolú 143 68 < 1 94 12 < 1 117 36 < 1
StringBufú 102 30 < 1 102 30 < 1 102 30 < 1
Weblech 120,161 5,676 13.75 103,155 3,920 6.39 90,096 4,217 5.24
Derby 46,222,858 22,008,512 477.13 22,530,501 12,184,850 347.98 36,461,542 17,412,201 300.58
Avg. 8,666,667 4,288,982 199.35 4,377,067 2,413,936 151.03 6,950,440 3,437,362 151.26

* The exploration time on these two benchmarks is far less than 1 second and we ignore them when we compute the average results.

Figure 7 Reduction on the number of the reads and constraints as well as the solving time

achieved by MCR-S and MCR-S+ comparing to MCR. The results generated by MCR are normalized

to one as the baseline.

0

0.2

0.4

0.6

0.8

1
(a) number of reads reduced

Co
un
ter
Air
line

Pin
gp
on
g

Bu
bb
leS
ort

We
ble
ch
De
rby Av

g.
0

0.2

0.4

0.6

0.8

1
(b) number of constraints reduced

Co
un
ter
Air
line

Pin
gp
on
g

Bu
bb
leS
ort

We
ble
ch
De
rby Av

g.
0

0.2

0.4

0.6

0.8

1
(c) solving time reduced

Co
un
ter
Air
line

Pin
gp
on
g

Bu
bb
leS
ort

We
ble
ch
De
rby Av

g.

MCR
MCR-S
MCR-S+

to MCR-S, MCR-S+ makes less reduction because it needs to constrain more reads into
the formula to avoid the redundant executions (Section 5). But MCR-S+ still makes a
reduction that ranges from 8.9% to 25.0% compared to MCR. Among the 6 benchmarks,
neither MCR-S or MCR-S+ makes a reduction on Airline. The reason is that in the routine
run() of Airline, all the reads and writes are control dependent on a read in the if predicate.
As introduced in Section 4, we can’t reduce any reads for this benchmark. In addition to
Airline, the other benchmark that MCR-S+ fails to reduce the reads is Pingpong, while
MCR-S reduces the reads by 28.2%. Note that for benchmark Weblech, MCR-S considers
more reads than MCR-S+ does. This is because that MCR-S explores more executions than
MCR-S+ does due to the redundancy, and we take as the final result the total number of
reads the approaches have considered in the whole state-space exploration.

Number of constraints reduced.

Figure 7(b) reports the reduction of the data validity constraints by MCR-S and MCR-S+.
As the reads are reduced by our approaches, we do not need to constrain those reads to
return the same value, and thus reduce the size of the constraints. Given a read r that
returns the value by the write w, we count the constraint as one, and the constraint enforces
another write that writes a di�erent value from that by w to the same location to either occur
before w or after r. On average, MCR-S reduces the number of constraints by 31.6%, while

ECOOP 2017

Approach MCR-S MCR-S+

Reads 27.1%	↓ 12.1%	↓

Constraints 31.6%	↓ 15.7%	↓

Solving	time 27.8%	↓ 26.2%	↓

Ø MCR-S:	Optimization	
with	redundant	
executions

Ø MCR-S+:	No	
redundancy,	but	less	
reads	reduced

Conclusion	&	Future	Work

Ø Improvement	over	MCR
• #reads/constraints:	12.1%	- 27.1%	,	15.7%	- 31.6
• solving	time:						~27%

Ø Future	work
• take	input	non-determinism	into	consideration
• release	the	tool

21

22

Thank	You	

