# Speeding Up Maximal Causality Reduction with Static Analysis

<u>Shiyou Huang</u> Jeff Huang huangsy@tamu.edu Parasol Lab, Texas A&M University





## Maximal Causality Reduction (MCR)



## Maximal Causality Reduction (MCR)



Trace: A sequence of events executed by the program

 Constraints: An order variable (O) for each event in the trace
 E.g., if e1 happens before e2, 0<sub>e1</sub> < 0<sub>e2</sub>

Interleaving: A sequence of thread schedule

## Constraints Model -- $\Omega(t)$

$$\Omega(t) = \phi_{mhb} \wedge \phi_{lock} \wedge \phi_{validity} \wedge \phi_{state}$$

must-happen-before(Ø<sub>mhb</sub>)

E.g., 01 < 02 if e1 and e2 are by the same thread, and e1 occurs before e2

lock-mutual-exclusion(Ø<sub>lock</sub>)

E.g., for a lock pair, (l1, u1) and (l2, u2),  $O_{u1} < O_{l2} \lor O_{u2} < O_{l1}$ 

> validity(Ø<sub>validity</sub>)

an event is feasible if every read that must-happen-before it returns the same value

#### new state(Ø<sub>state</sub>)

At least one read in **t** returns a different value

### An Example

Init: x=y=0

**Possible schedules:** 

1. 1-2-3-4-5

2. 1-2-4-3-5

3. 1-4-5-2

4. ...

**S0: 1-2-3-4-5**, 
$$r1 = r2 = 0$$
,  $True \equiv x == 0$ 



5

# Validity Constraints

- $\prec_e$  : set of events that happen before **e**
- $W_v^x$ : set of writes that write value **V** to a variable, **X**

 $W^x$  : set of writes that write other values to **X** 

$$\Phi_{validity} = \bigwedge_{\substack{r \in \prec_e}} \Phi_{value}(r, v),$$

 $\phi_{value}(r,v)$  enforces **r** returns the value **v** 

$$\Phi_{value}(r,v) \equiv \bigvee_{\substack{w \in W_v^x \\ w \neq w' \in W^x}} (\Phi_{validity}(w) \land O_w < O_r$$

$$\bigwedge_{\substack{w \neq w' \in W^x}} (O_{w'} < O_w \lor O_r < O_{w'}))$$

every read *r* before *e*, return
 the same value *v* match *r* to a write
 that writes the
 value *v* to the
 same location

#### Limitations

Most events are reads and writes in a trace

> Complicated constraints, **cubic** in the size of the trace

Just a few reads influence the reachability of a later event

Construct unnecessary constraints





#### Our Approach Ordering More Trace Constraints Schedules run events happen before r5: r1 **MCR + Static Dependency Analysis** Λ Ψvalue \' <sup>¬</sup> r4 r5 depends on: r5 r1, r2, r3, r4

### System Dependency Graph (SDG)



#### **Control Dependency**





Case a: an event is directly depends on a read operation evaluated by an if predicate

$$x == 1 \xrightarrow{DD \cdot CD} r = y$$

Case b: the dependency may be transmitted via a data dependency  $a = x \xrightarrow{DD \cdot DD \cdot CD} r = y$ 

#### **Control Dependency**





Case c: the evaluation may depend on the return value of another procedure  $return \ x \xrightarrow{PO \cdot DD \cdot DD \cdot CD} r = y$  Case d: the read may depend on a if predicate in a different procedure  $x == 1 \xrightarrow{CD \cdot CD \cdot CD \cdot CD} r = y$ 

#### **Control Dependency**

Definition: given two nodes n1 and n2 in an SDG, we use n1  $\delta^c$ n2 to denote that n2 is control dependent on n1

$$n1 \ \delta^{c} \ n2 \ \Leftrightarrow \ n1 \xrightarrow{e^{*}CD} n2,$$
  
$$e \ := \ null$$
  
$$|CD \ |DD \ |PI \ |PO \ |CL$$

CD: control dependency DD: data dependency PI/O: parameter in/out CL: call

#### **Constraints Reduction**

Main Idea:

Only enforce reads that are control-dependency related to return the same value

 $\begin{array}{l} \prec_{\tau} (e) \leftarrow \text{Happens-before}(\tau, e) \\ \prec_{\tau}^{D} (e) \leftarrow \text{DependencyComputation}(\prec_{\tau} (e), e) \\ \text{foreach } read \ r \in \prec_{\tau}^{D} (e) \ with \ value \ v \ \text{do} \\ | \ // \ \Phi_{value}(r, v) \ \text{recursively call } \textit{DataValidityConstraints}() \\ | \ \Phi_{validity} \ \wedge = \Phi_{value}(r, v) \\ \text{end} \end{array}$ 

#### **Redundancy Problem**



#### **Redundancy Problem**



### Solution to Redundancy Problem

We treat the events into two categories:

1. target read: a read considered to see a different value

2. other events

 $\prec_{\tau} (e) \leftarrow \text{Happens-before}(\tau, e)$ // target read: read considered to return new values
if e is not a TARGET READ then  $\mid \prec_{\tau}^{D} (e) \leftarrow \text{DependencyComputation}(\prec_{\tau} (e), e)$ end

for each read  $r \in \prec_{\tau}^{D}(e)$  with value v do  $| // \Phi_{value}(r, v)$  recursively call DataValidityConstraints()  $\Phi_{validity} \wedge = \Phi_{value}(r, v)$ end

### Evaluation

Dependency analysis using JOANA<sup>1</sup> [Graf] and WALA<sup>2</sup>

➤Comparisons with MCR

- #reads/constraints reduced
- solving time reduced
- ➢ Benchmarks [Huang, PLDI'15]

1. Joana: http://pp.ipd.kit.edu/projects/joana/

2. Wala: http://wala.sourceforge.net/wiki/index.php/Main\_Page

#### Benchmarks and SDG

| Program    | time(s) | memory(M) | #nodes      | #edges          |
|------------|---------|-----------|-------------|-----------------|
| Counter    | 2.00    | 69        | 289         | $1,\!440$       |
| Airline    | 2.10    | 79        | 809         | 4,902           |
| Pingpong   | 2.52    | 83        | 914         | 5,244           |
| BubbleSort | 2.14    | 81        | 911         | 5,710           |
| Pool       | 3.67    | 75        | $2,\!848$   | $17,\!586$      |
| StringBuf  | 2.96    | 111       | $2,\!129$   | 12,310          |
| Weblech    | 8.01    | 219       | 22,094      | $167,\!492$     |
| Derby      | 69.67   | 1,385     | $115,\!658$ | $2,\!409,\!784$ |

|      | time  | memory |
|------|-------|--------|
| Avg. | 11.6s | 263M   |

## Comparison with MCR

- MCR-S: Optimization with redundant executions
- MCR-S+: No redundancy, but less reads reduced







| Approach     | MCR-S   | MCR-S+  |
|--------------|---------|---------|
| Reads        | 27.1% 🗸 | 12.1% 🗸 |
| Constraints  | 31.6% 🗸 | 15.7% 🗸 |
| Solving time | 27.8% 🗸 | 26.2% 🗸 |

## **Conclusion & Future Work**

#### Improvement over MCR

- #reads/constraints: 12.1% 27.1% , 15.7% 31.6
- solving time: ~27%

#### Future work

- take input non-determinism into consideration
- release the tool



# BARCELONA 2017 ECOOP 2017

**Thank You**