
Maximal	Causality	Reduction
for	TSO	and	PSO

1

Shiyou	Huang Jeff	Huang
huangsy@tamu.edu

Parasol	Lab,	Texas	A&M	University

A Real	PSO	Bug	– $12	million	loss	of	equipment

2

curPos =	new	Point(1,2);				
class	Point	{		int x,	y;	}
Thread	1:
newPos =	new	

Point(curPos.x+1,	curPos.y+1);

Thread	2:
while	(newPos !=	null)
if (newPos.x+1	!=	newPos.y)
 ERROR

x=0
y=0
x=curPos.x+1
y=curPos.y+1
curPos =	object

http://stackoverflow.com/questions/16159203/

Memory	Consistencies

3

http://preshing.com/20120930/weak-vs-strong-memory-models/

TSO	and	PSO

4

Total	Store	Ordering	(TSO)
For	a	write	w and	a	read	r by	the	same	thread,	the	read	r

can	be	reordered	with		the	write	w	if	the	two	operations	
access	different	locations.

Partial	Store	Ordering	(PSO)
For	a	write	w1 and	a	write	w2 by	the	same	thread,	the	

write	w2 can	be	reordered	with	the	write	w1 if	the	two	
operations	access	different	locations.

New	State	Generated	under	TSO/PSO

5

thread 1:
x = 1 //a1
a = y //a2

thread 2:
y = 1 //b1
b = x //b2

Init: x=y=0

Assert (a==1 || b==1)

b2	– a1	– a2	– b1 (a=0,	b=0)

Huge	Interleaving	Space

#interleaving	=

6

!(# 𝑁%
&

%'(
𝑁(

)
&

('*

(Lu	et	al.	FSE’07)

(M	:	#threads	and	Ni	 :	#accesses	by	thread	i)

M=4,	N1=N2=N3=N4=4,	#interleavings >	60	million

Related	Work

•Dynamic	Partial	Order	Reduction	(DPOR)	
[Flanagan	et	al.,	POPL’05]
•Maximal	Causality	Reduction	[Huang,	PLDI’15]
•rInspect [Zhang	et	al.,	PLDI’15]
•SATCheck [Demsky and	Lam,	OOPSLA’15]

7

Maximal	Causality	Reduction	(MCR)

8

Given	an	executed	trace,	MCR	generates	
new	interleavings to	explore	the	program	state	
space.	Each	new	interleaving	(called	seed	
interleaving)	enforces	at	least	one	read	to	read	
a	new	value.

Workflow	of	MCR

Seed
Interleavings

Interleaving 1

Interleaving 2

Interleaving n

...

Scheduler

Constraints
Formula

SMT Solver

Interleaving
Builder

Trace

Formula

Solution

Interleaving

New Seed
Interleavings

9

1 2

3

4

5

Workflow	of	MCR

Seed
Interleavings

Interleaving 1

Interleaving 2

Interleaving n

...

Scheduler

Constraints
Formula

SMT Solver

Interleaving
Builder

Trace

Formula

Solution

Interleaving

New Seed
Interleavings

10

1 2

3

4

5

Following	a	seed	interleaving will	produce	a	new	state

Constraints	(ϕ)

2. Solving the formula by an SMT solver, and building a
new seed interleaving from the solution.

Next, we describe the first step in Section 2.3 and illustrate
the second step using an example in Section 2.4.

2.3 Constraint Encoding of MCR
For each event in the given trace ⌧ , MCR creates an order
variable O denoting its order in a certain feasible trace in
MaxCausal(⌧). MCR then encodes MaxCausal(⌧) into a for-
mula �mc consisting of three types of first-order logical con-
straints over the order variables O: (1) must-happen-before
constraints (�

mhb

); (2) lock-mutual-exclusion constraints
(�

lock

); (3) data-validity constraints (�
validity

). �mc is then
conjoined with a new state constraint �

state

to generate a
final formula � that is used to produce a seed interleaving.

Must-happen-before (MHB) constraints (�
mhb

). The
�

mhb

constraint ensures a minimal set of happens-before
relations that events in any feasible interleaving must obey. It
requires that (1) All events by the same thread should happen
in the program order (obeying SC); (2) The begin event of
a thread should happen after the fork event that starts the
thread; (3) A join event for a thread should happen after the
last event of the thread.

Lock-mutual-exclusion constraints (�
lock

). The �
lock

constraint ensures that events guarded by the same lock
are mutually exclusive. It is constructed over the ordering of
the lock and unlock events. More specifically, for each lock,
MCR extracts all the lock/unlock pairs of events following the
program order and constructs the following constraints for
each two pairs (l1, u1) and (l2, u2): O

u1 < O
l2 _O

u2 < O
l1 .

Data-validity constraints (�
validity

). The �
validity

con-
straint ensures that all events in any trace in MaxCausal(⌧)
are feasible. For an event e to be feasible, all events that
must-happen-before e must be feasible, and every read event
that e depends on (excluding e itself) should read the same
value as it reads in ⌧ . Let �

e

denote the set of events that
must-happen-before an event e, and consider a read event
r=read(t,x,v) in �

e

on a memory address x with value v by
thread t. Let W x denote the set of all writes to x, and W x

v

the set of writes to x with value v, the �
validity

constraint for
e is encoded as

V
r2�

e

�
value

(r, v), where �
value

(r, v) is the

state constraint that ensures r to read a value v:

�
value

(r, v) ⌘
W

w2W

x

v

(�
validity

(w) ^O
w

< O
r

V
w 6=w

02W

x

(O
w

0 < O
w

_O
r

< O
w

0))

New state constraints (�
state

). The key idea for MCR to
eliminate redundant executions is enforcing at least one read
event in each explored execution to read a new value so that
no two executions reach the same state. MCR enumerates
each read event in ⌧ on the set of all values by the writes on
the same memory address. For each value that is different

Initially: x = y = 0

Thread1: Thread2:

1: x = 1
2: a = y

3: y = 1
4: b = x

assert (a == 1 || b == 1)

Initially: x = y = 0

Thread1: Thread2:

1: x = 1
2: y = 1

3: if (y == 1)
4: if (x == 0)

 5: ERROR

(a) A TSO example Initially: x = y = 0

Thread1: Thread2:

1: x = 1
2: a = y

3: y = 1
4: b = x

assert (a == 1 || b == 1)

Initially: x = y = 0

Thread1: Thread2:

1: x = 1
2: y = 1

3: if (y == 1)
4: if (x == 0)

 5: ERROR

(b) A PSO example

Figure 3: (a) shows a program with error under TSO, but
correct under SC; (b) shows a program with error under PSO,
but correct under SC and TSO.

from what it reads in ⌧ , a new state constraint is generated to
ensure the read event to read the new value. Consider a read
r=read(t,x,v) on x with value v, and a value v0 6= v written
by any write on x, �

state

is written as �
value

(r, v0). Since
all such state constraints are generated, MCR ensures that
no non-equivalent interleaving is missed. Hence, the entire
state-space will be covered systematically by MCR.

2.4 Example
We use the example in Figure 3(a) to illustrate MCR. The
program has 6 different executions (3 are redundant) under
SC, but 24 different executions under TSO (20 are redundant).
MCR is able to explore all the state-space under SC via only
3 executions, but it fails to expose the assertion violation that
is only possible under TSO.

Let e
i

denote the event at the line number i. Given a
trace ⌧ = he1, · · · , eni, MCR uses n integer variables
hO1, · · · , On

i to denote the order in which the events happen
in a certain execution. The value of O

i

represents the position
of e

i

in a trace. If O
i

< O
j

, then e
i

will be executed before
e
j

in the generated interleaving.
Suppose in the initial execution, MCR obtains the trace

⌧0 = he1, e2, e3, e4i under SC, and the program reaches
the state (a=0,b=1). MCR constructs the MHB constraints
�

mhb

= O1 < O2 ^O3 < O4. Since the trace contains two
reads, e2 (R(y)=0) and e4 (R(x)=1), to generate new seed
interleavings, MCR tries to enforce each of the two reads to
read a different value in future executions. For example, for
e2, it adds the new state constraint �

value

= O3 < O2

to enforce R(y) to read value 1 (written by e3) instead
of 0. By solving this constraint conjoined with �

mhb

, the
SMT solver will return a solution such as {O1 = 1, O2 =
3, O3 = 2}. From this solution, MCR will generate a new
seed interleaving e1-e3-e2 because O1 < O3 < O2. By
re-executing the program following this seed interleaving,
MCR obtains a new trace ⌧1 = he1, e3, e2, e4i and reaches
a new state (a=1,b=1). Then the exploration along this seed
interleaving is finished because there is no new value that can
be read by any read event in ⌧1. Similarly, the read event e4 in
⌧0 generates a new seed interleaving e3-e4, which produces
a new trace ⌧2 = he3, e4, e1, e2i that reaches a new state
(a=1,b=0).

11

• happens-before
• lock-mutual-exclusion

• validity

• new	state

2. Solving the formula by an SMT solver, and building a
new seed interleaving from the solution.

Next, we describe the first step in Section 2.3 and illustrate
the second step using an example in Section 2.4.

2.3 Constraint Encoding of MCR
For each event in the given trace ⌧ , MCR creates an order
variable O denoting its order in a certain feasible trace in
MaxCausal(⌧). MCR then encodes MaxCausal(⌧) into a for-
mula �mc consisting of three types of first-order logical con-
straints over the order variables O: (1) must-happen-before
constraints (�

mhb

); (2) lock-mutual-exclusion constraints
(�

lock

); (3) data-validity constraints (�
validity

). �mc is then
conjoined with a new state constraint �

state

to generate a
final formula � that is used to produce a seed interleaving.

Must-happen-before (MHB) constraints (�
mhb

). The
�

mhb

constraint ensures a minimal set of happens-before
relations that events in any feasible interleaving must obey. It
requires that (1) All events by the same thread should happen
in the program order (obeying SC); (2) The begin event of
a thread should happen after the fork event that starts the
thread; (3) A join event for a thread should happen after the
last event of the thread.

Lock-mutual-exclusion constraints (�
lock

). The �
lock

constraint ensures that events guarded by the same lock
are mutually exclusive. It is constructed over the ordering of
the lock and unlock events. More specifically, for each lock,
MCR extracts all the lock/unlock pairs of events following the
program order and constructs the following constraints for
each two pairs (l1, u1) and (l2, u2): O

u1 < O
l2 _O

u2 < O
l1 .

Data-validity constraints (�
validity

). The �
validity

con-
straint ensures that all events in any trace in MaxCausal(⌧)
are feasible. For an event e to be feasible, all events that
must-happen-before e must be feasible, and every read event
that e depends on (excluding e itself) should read the same
value as it reads in ⌧ . Let �

e

denote the set of events that
must-happen-before an event e, and consider a read event
r=read(t,x,v) in �

e

on a memory address x with value v by
thread t. Let W x denote the set of all writes to x, and W x

v

the set of writes to x with value v, the �
validity

constraint for
e is encoded as

V
r2�

e

�
value

(r, v), where �
value

(r, v) is the

state constraint that ensures r to read a value v:

�
value

(r, v) ⌘
W

w2W

x

v

(�
validity

(w) ^O
w

< O
r

V
w 6=w

02W

x

(O
w

0 < O
w

_O
r

< O
w

0))

New state constraints (�
state

). The key idea for MCR to
eliminate redundant executions is enforcing at least one read
event in each explored execution to read a new value so that
no two executions reach the same state. MCR enumerates
each read event in ⌧ on the set of all values by the writes on
the same memory address. For each value that is different

Initially: x = y = 0

Thread1: Thread2:

1: x = 1
2: a = y

3: y = 1
4: b = x

assert (a == 1 || b == 1)

Initially: x = y = 0

Thread1: Thread2:

1: x = 1
2: y = 1

3: if (y == 1)
4: if (x == 0)

 5: ERROR

(a) A TSO example Initially: x = y = 0

Thread1: Thread2:

1: x = 1
2: a = y

3: y = 1
4: b = x

assert (a == 1 || b == 1)

Initially: x = y = 0

Thread1: Thread2:

1: x = 1
2: y = 1

3: if (y == 1)
4: if (x == 0)

 5: ERROR

(b) A PSO example

Figure 3: (a) shows a program with error under TSO, but
correct under SC; (b) shows a program with error under PSO,
but correct under SC and TSO.

from what it reads in ⌧ , a new state constraint is generated to
ensure the read event to read the new value. Consider a read
r=read(t,x,v) on x with value v, and a value v0 6= v written
by any write on x, �

state

is written as �
value

(r, v0). Since
all such state constraints are generated, MCR ensures that
no non-equivalent interleaving is missed. Hence, the entire
state-space will be covered systematically by MCR.

2.4 Example
We use the example in Figure 3(a) to illustrate MCR. The
program has 6 different executions (3 are redundant) under
SC, but 24 different executions under TSO (20 are redundant).
MCR is able to explore all the state-space under SC via only
3 executions, but it fails to expose the assertion violation that
is only possible under TSO.

Let e
i

denote the event at the line number i. Given a
trace ⌧ = he1, · · · , eni, MCR uses n integer variables
hO1, · · · , On

i to denote the order in which the events happen
in a certain execution. The value of O

i

represents the position
of e

i

in a trace. If O
i

< O
j

, then e
i

will be executed before
e
j

in the generated interleaving.
Suppose in the initial execution, MCR obtains the trace

⌧0 = he1, e2, e3, e4i under SC, and the program reaches
the state (a=0,b=1). MCR constructs the MHB constraints
�

mhb

= O1 < O2 ^O3 < O4. Since the trace contains two
reads, e2 (R(y)=0) and e4 (R(x)=1), to generate new seed
interleavings, MCR tries to enforce each of the two reads to
read a different value in future executions. For example, for
e2, it adds the new state constraint �

value

= O3 < O2

to enforce R(y) to read value 1 (written by e3) instead
of 0. By solving this constraint conjoined with �

mhb

, the
SMT solver will return a solution such as {O1 = 1, O2 =
3, O3 = 2}. From this solution, MCR will generate a new
seed interleaving e1-e3-e2 because O1 < O3 < O2. By
re-executing the program following this seed interleaving,
MCR obtains a new trace ⌧1 = he1, e3, e2, e4i and reaches
a new state (a=1,b=1). Then the exploration along this seed
interleaving is finished because there is no new value that can
be read by any read event in ⌧1. Similarly, the read event e4 in
⌧0 generates a new seed interleaving e3-e4, which produces
a new trace ⌧2 = he3, e4, e1, e2i that reaches a new state
(a=1,b=0).

Constraints	(ϕ)

2. Solving the formula by an SMT solver, and building a
new seed interleaving from the solution.

Next, we describe the first step in Section 2.3 and illustrate
the second step using an example in Section 2.4.

2.3 Constraint Encoding of MCR
For each event in the given trace ⌧ , MCR creates an order
variable O denoting its order in a certain feasible trace in
MaxCausal(⌧). MCR then encodes MaxCausal(⌧) into a for-
mula �mc consisting of three types of first-order logical con-
straints over the order variables O: (1) must-happen-before
constraints (�

mhb

); (2) lock-mutual-exclusion constraints
(�

lock

); (3) data-validity constraints (�
validity

). �mc is then
conjoined with a new state constraint �

state

to generate a
final formula � that is used to produce a seed interleaving.

Must-happen-before (MHB) constraints (�
mhb

). The
�

mhb

constraint ensures a minimal set of happens-before
relations that events in any feasible interleaving must obey. It
requires that (1) All events by the same thread should happen
in the program order (obeying SC); (2) The begin event of
a thread should happen after the fork event that starts the
thread; (3) A join event for a thread should happen after the
last event of the thread.

Lock-mutual-exclusion constraints (�
lock

). The �
lock

constraint ensures that events guarded by the same lock
are mutually exclusive. It is constructed over the ordering of
the lock and unlock events. More specifically, for each lock,
MCR extracts all the lock/unlock pairs of events following the
program order and constructs the following constraints for
each two pairs (l1, u1) and (l2, u2): O

u1 < O
l2 _O

u2 < O
l1 .

Data-validity constraints (�
validity

). The �
validity

con-
straint ensures that all events in any trace in MaxCausal(⌧)
are feasible. For an event e to be feasible, all events that
must-happen-before e must be feasible, and every read event
that e depends on (excluding e itself) should read the same
value as it reads in ⌧ . Let �

e

denote the set of events that
must-happen-before an event e, and consider a read event
r=read(t,x,v) in �

e

on a memory address x with value v by
thread t. Let W x denote the set of all writes to x, and W x

v

the set of writes to x with value v, the �
validity

constraint for
e is encoded as

V
r2�

e

�
value

(r, v), where �
value

(r, v) is the

state constraint that ensures r to read a value v:

�
value

(r, v) ⌘
W

w2W

x

v

(�
validity

(w) ^O
w

< O
r

V
w 6=w

02W

x

(O
w

0 < O
w

_O
r

< O
w

0))

New state constraints (�
state

). The key idea for MCR to
eliminate redundant executions is enforcing at least one read
event in each explored execution to read a new value so that
no two executions reach the same state. MCR enumerates
each read event in ⌧ on the set of all values by the writes on
the same memory address. For each value that is different

Initially: x = y = 0

Thread1: Thread2:

1: x = 1
2: a = y

3: y = 1
4: b = x

assert (a == 1 || b == 1)

Initially: x = y = 0

Thread1: Thread2:

1: x = 1
2: y = 1

3: if (y == 1)
4: if (x == 0)

 5: ERROR

(a) A TSO example Initially: x = y = 0

Thread1: Thread2:

1: x = 1
2: a = y

3: y = 1
4: b = x

assert (a == 1 || b == 1)

Initially: x = y = 0

Thread1: Thread2:

1: x = 1
2: y = 1

3: if (y == 1)
4: if (x == 0)

 5: ERROR

(b) A PSO example

Figure 3: (a) shows a program with error under TSO, but
correct under SC; (b) shows a program with error under PSO,
but correct under SC and TSO.

from what it reads in ⌧ , a new state constraint is generated to
ensure the read event to read the new value. Consider a read
r=read(t,x,v) on x with value v, and a value v0 6= v written
by any write on x, �

state

is written as �
value

(r, v0). Since
all such state constraints are generated, MCR ensures that
no non-equivalent interleaving is missed. Hence, the entire
state-space will be covered systematically by MCR.

2.4 Example
We use the example in Figure 3(a) to illustrate MCR. The
program has 6 different executions (3 are redundant) under
SC, but 24 different executions under TSO (20 are redundant).
MCR is able to explore all the state-space under SC via only
3 executions, but it fails to expose the assertion violation that
is only possible under TSO.

Let e
i

denote the event at the line number i. Given a
trace ⌧ = he1, · · · , eni, MCR uses n integer variables
hO1, · · · , On

i to denote the order in which the events happen
in a certain execution. The value of O

i

represents the position
of e

i

in a trace. If O
i

< O
j

, then e
i

will be executed before
e
j

in the generated interleaving.
Suppose in the initial execution, MCR obtains the trace

⌧0 = he1, e2, e3, e4i under SC, and the program reaches
the state (a=0,b=1). MCR constructs the MHB constraints
�

mhb

= O1 < O2 ^O3 < O4. Since the trace contains two
reads, e2 (R(y)=0) and e4 (R(x)=1), to generate new seed
interleavings, MCR tries to enforce each of the two reads to
read a different value in future executions. For example, for
e2, it adds the new state constraint �

value

= O3 < O2

to enforce R(y) to read value 1 (written by e3) instead
of 0. By solving this constraint conjoined with �

mhb

, the
SMT solver will return a solution such as {O1 = 1, O2 =
3, O3 = 2}. From this solution, MCR will generate a new
seed interleaving e1-e3-e2 because O1 < O3 < O2. By
re-executing the program following this seed interleaving,
MCR obtains a new trace ⌧1 = he1, e3, e2, e4i and reaches
a new state (a=1,b=1). Then the exploration along this seed
interleaving is finished because there is no new value that can
be read by any read event in ⌧1. Similarly, the read event e4 in
⌧0 generates a new seed interleaving e3-e4, which produces
a new trace ⌧2 = he3, e4, e1, e2i that reaches a new state
(a=1,b=0).

12

• happens-before
• lock-mutual-exclusion

• validity

• new	state

2. Solving the formula by an SMT solver, and building a
new seed interleaving from the solution.

Next, we describe the first step in Section 2.3 and illustrate
the second step using an example in Section 2.4.

2.3 Constraint Encoding of MCR
For each event in the given trace ⌧ , MCR creates an order
variable O denoting its order in a certain feasible trace in
MaxCausal(⌧). MCR then encodes MaxCausal(⌧) into a for-
mula �mc consisting of three types of first-order logical con-
straints over the order variables O: (1) must-happen-before
constraints (�

mhb

); (2) lock-mutual-exclusion constraints
(�

lock

); (3) data-validity constraints (�
validity

). �mc is then
conjoined with a new state constraint �

state

to generate a
final formula � that is used to produce a seed interleaving.

Must-happen-before (MHB) constraints (�
mhb

). The
�

mhb

constraint ensures a minimal set of happens-before
relations that events in any feasible interleaving must obey. It
requires that (1) All events by the same thread should happen
in the program order (obeying SC); (2) The begin event of
a thread should happen after the fork event that starts the
thread; (3) A join event for a thread should happen after the
last event of the thread.

Lock-mutual-exclusion constraints (�
lock

). The �
lock

constraint ensures that events guarded by the same lock
are mutually exclusive. It is constructed over the ordering of
the lock and unlock events. More specifically, for each lock,
MCR extracts all the lock/unlock pairs of events following the
program order and constructs the following constraints for
each two pairs (l1, u1) and (l2, u2): O

u1 < O
l2 _O

u2 < O
l1 .

Data-validity constraints (�
validity

). The �
validity

con-
straint ensures that all events in any trace in MaxCausal(⌧)
are feasible. For an event e to be feasible, all events that
must-happen-before e must be feasible, and every read event
that e depends on (excluding e itself) should read the same
value as it reads in ⌧ . Let �

e

denote the set of events that
must-happen-before an event e, and consider a read event
r=read(t,x,v) in �

e

on a memory address x with value v by
thread t. Let W x denote the set of all writes to x, and W x

v

the set of writes to x with value v, the �
validity

constraint for
e is encoded as

V
r2�

e

�
value

(r, v), where �
value

(r, v) is the

state constraint that ensures r to read a value v:

�
value

(r, v) ⌘
W

w2W

x

v

(�
validity

(w) ^O
w

< O
r

V
w 6=w

02W

x

(O
w

0 < O
w

_O
r

< O
w

0))

New state constraints (�
state

). The key idea for MCR to
eliminate redundant executions is enforcing at least one read
event in each explored execution to read a new value so that
no two executions reach the same state. MCR enumerates
each read event in ⌧ on the set of all values by the writes on
the same memory address. For each value that is different

Initially: x = y = 0

Thread1: Thread2:

1: x = 1
2: a = y

3: y = 1
4: b = x

assert (a == 1 || b == 1)

Initially: x = y = 0

Thread1: Thread2:

1: x = 1
2: y = 1

3: if (y == 1)
4: if (x == 0)

 5: ERROR

(a) A TSO example Initially: x = y = 0

Thread1: Thread2:

1: x = 1
2: a = y

3: y = 1
4: b = x

assert (a == 1 || b == 1)

Initially: x = y = 0

Thread1: Thread2:

1: x = 1
2: y = 1

3: if (y == 1)
4: if (x == 0)

 5: ERROR

(b) A PSO example

Figure 3: (a) shows a program with error under TSO, but
correct under SC; (b) shows a program with error under PSO,
but correct under SC and TSO.

from what it reads in ⌧ , a new state constraint is generated to
ensure the read event to read the new value. Consider a read
r=read(t,x,v) on x with value v, and a value v0 6= v written
by any write on x, �

state

is written as �
value

(r, v0). Since
all such state constraints are generated, MCR ensures that
no non-equivalent interleaving is missed. Hence, the entire
state-space will be covered systematically by MCR.

2.4 Example
We use the example in Figure 3(a) to illustrate MCR. The
program has 6 different executions (3 are redundant) under
SC, but 24 different executions under TSO (20 are redundant).
MCR is able to explore all the state-space under SC via only
3 executions, but it fails to expose the assertion violation that
is only possible under TSO.

Let e
i

denote the event at the line number i. Given a
trace ⌧ = he1, · · · , eni, MCR uses n integer variables
hO1, · · · , On

i to denote the order in which the events happen
in a certain execution. The value of O

i

represents the position
of e

i

in a trace. If O
i

< O
j

, then e
i

will be executed before
e
j

in the generated interleaving.
Suppose in the initial execution, MCR obtains the trace

⌧0 = he1, e2, e3, e4i under SC, and the program reaches
the state (a=0,b=1). MCR constructs the MHB constraints
�

mhb

= O1 < O2 ^O3 < O4. Since the trace contains two
reads, e2 (R(y)=0) and e4 (R(x)=1), to generate new seed
interleavings, MCR tries to enforce each of the two reads to
read a different value in future executions. For example, for
e2, it adds the new state constraint �

value

= O3 < O2

to enforce R(y) to read value 1 (written by e3) instead
of 0. By solving this constraint conjoined with �

mhb

, the
SMT solver will return a solution such as {O1 = 1, O2 =
3, O3 = 2}. From this solution, MCR will generate a new
seed interleaving e1-e3-e2 because O1 < O3 < O2. By
re-executing the program following this seed interleaving,
MCR obtains a new trace ⌧1 = he1, e3, e2, e4i and reaches
a new state (a=1,b=1). Then the exploration along this seed
interleaving is finished because there is no new value that can
be read by any read event in ⌧1. Similarly, the read event e4 in
⌧0 generates a new seed interleaving e3-e4, which produces
a new trace ⌧2 = he3, e4, e1, e2i that reaches a new state
(a=1,b=0).

An	event	is	feasible	if	every	read	in	the	seed	
interleaving	returns	the	same	value	as	that	in	
the	previous	trace.

Constraints	(ϕ)

2. Solving the formula by an SMT solver, and building a
new seed interleaving from the solution.

Next, we describe the first step in Section 2.3 and illustrate
the second step using an example in Section 2.4.

2.3 Constraint Encoding of MCR
For each event in the given trace ⌧ , MCR creates an order
variable O denoting its order in a certain feasible trace in
MaxCausal(⌧). MCR then encodes MaxCausal(⌧) into a for-
mula �mc consisting of three types of first-order logical con-
straints over the order variables O: (1) must-happen-before
constraints (�

mhb

); (2) lock-mutual-exclusion constraints
(�

lock

); (3) data-validity constraints (�
validity

). �mc is then
conjoined with a new state constraint �

state

to generate a
final formula � that is used to produce a seed interleaving.

Must-happen-before (MHB) constraints (�
mhb

). The
�

mhb

constraint ensures a minimal set of happens-before
relations that events in any feasible interleaving must obey. It
requires that (1) All events by the same thread should happen
in the program order (obeying SC); (2) The begin event of
a thread should happen after the fork event that starts the
thread; (3) A join event for a thread should happen after the
last event of the thread.

Lock-mutual-exclusion constraints (�
lock

). The �
lock

constraint ensures that events guarded by the same lock
are mutually exclusive. It is constructed over the ordering of
the lock and unlock events. More specifically, for each lock,
MCR extracts all the lock/unlock pairs of events following the
program order and constructs the following constraints for
each two pairs (l1, u1) and (l2, u2): O

u1 < O
l2 _O

u2 < O
l1 .

Data-validity constraints (�
validity

). The �
validity

con-
straint ensures that all events in any trace in MaxCausal(⌧)
are feasible. For an event e to be feasible, all events that
must-happen-before e must be feasible, and every read event
that e depends on (excluding e itself) should read the same
value as it reads in ⌧ . Let �

e

denote the set of events that
must-happen-before an event e, and consider a read event
r=read(t,x,v) in �

e

on a memory address x with value v by
thread t. Let W x denote the set of all writes to x, and W x

v

the set of writes to x with value v, the �
validity

constraint for
e is encoded as

V
r2�

e

�
value

(r, v), where �
value

(r, v) is the

state constraint that ensures r to read a value v:

�
value

(r, v) ⌘
W

w2W

x

v

(�
validity

(w) ^O
w

< O
r

V
w 6=w

02W

x

(O
w

0 < O
w

_O
r

< O
w

0))

New state constraints (�
state

). The key idea for MCR to
eliminate redundant executions is enforcing at least one read
event in each explored execution to read a new value so that
no two executions reach the same state. MCR enumerates
each read event in ⌧ on the set of all values by the writes on
the same memory address. For each value that is different

Initially: x = y = 0

Thread1: Thread2:

1: x = 1
2: a = y

3: y = 1
4: b = x

assert (a == 1 || b == 1)

Initially: x = y = 0

Thread1: Thread2:

1: x = 1
2: y = 1

3: if (y == 1)
4: if (x == 0)

 5: ERROR

(a) A TSO example Initially: x = y = 0

Thread1: Thread2:

1: x = 1
2: a = y

3: y = 1
4: b = x

assert (a == 1 || b == 1)

Initially: x = y = 0

Thread1: Thread2:

1: x = 1
2: y = 1

3: if (y == 1)
4: if (x == 0)

 5: ERROR

(b) A PSO example

Figure 3: (a) shows a program with error under TSO, but
correct under SC; (b) shows a program with error under PSO,
but correct under SC and TSO.

from what it reads in ⌧ , a new state constraint is generated to
ensure the read event to read the new value. Consider a read
r=read(t,x,v) on x with value v, and a value v0 6= v written
by any write on x, �

state

is written as �
value

(r, v0). Since
all such state constraints are generated, MCR ensures that
no non-equivalent interleaving is missed. Hence, the entire
state-space will be covered systematically by MCR.

2.4 Example
We use the example in Figure 3(a) to illustrate MCR. The
program has 6 different executions (3 are redundant) under
SC, but 24 different executions under TSO (20 are redundant).
MCR is able to explore all the state-space under SC via only
3 executions, but it fails to expose the assertion violation that
is only possible under TSO.

Let e
i

denote the event at the line number i. Given a
trace ⌧ = he1, · · · , eni, MCR uses n integer variables
hO1, · · · , On

i to denote the order in which the events happen
in a certain execution. The value of O

i

represents the position
of e

i

in a trace. If O
i

< O
j

, then e
i

will be executed before
e
j

in the generated interleaving.
Suppose in the initial execution, MCR obtains the trace

⌧0 = he1, e2, e3, e4i under SC, and the program reaches
the state (a=0,b=1). MCR constructs the MHB constraints
�

mhb

= O1 < O2 ^O3 < O4. Since the trace contains two
reads, e2 (R(y)=0) and e4 (R(x)=1), to generate new seed
interleavings, MCR tries to enforce each of the two reads to
read a different value in future executions. For example, for
e2, it adds the new state constraint �

value

= O3 < O2

to enforce R(y) to read value 1 (written by e3) instead
of 0. By solving this constraint conjoined with �

mhb

, the
SMT solver will return a solution such as {O1 = 1, O2 =
3, O3 = 2}. From this solution, MCR will generate a new
seed interleaving e1-e3-e2 because O1 < O3 < O2. By
re-executing the program following this seed interleaving,
MCR obtains a new trace ⌧1 = he1, e3, e2, e4i and reaches
a new state (a=1,b=1). Then the exploration along this seed
interleaving is finished because there is no new value that can
be read by any read event in ⌧1. Similarly, the read event e4 in
⌧0 generates a new seed interleaving e3-e4, which produces
a new trace ⌧2 = he3, e4, e1, e2i that reaches a new state
(a=1,b=0).

13

• happens-before
• lock-mutual-exclusion

• validity

• new	state

2. Solving the formula by an SMT solver, and building a
new seed interleaving from the solution.

Next, we describe the first step in Section 2.3 and illustrate
the second step using an example in Section 2.4.

2.3 Constraint Encoding of MCR
For each event in the given trace ⌧ , MCR creates an order
variable O denoting its order in a certain feasible trace in
MaxCausal(⌧). MCR then encodes MaxCausal(⌧) into a for-
mula �mc consisting of three types of first-order logical con-
straints over the order variables O: (1) must-happen-before
constraints (�

mhb

); (2) lock-mutual-exclusion constraints
(�

lock

); (3) data-validity constraints (�
validity

). �mc is then
conjoined with a new state constraint �

state

to generate a
final formula � that is used to produce a seed interleaving.

Must-happen-before (MHB) constraints (�
mhb

). The
�

mhb

constraint ensures a minimal set of happens-before
relations that events in any feasible interleaving must obey. It
requires that (1) All events by the same thread should happen
in the program order (obeying SC); (2) The begin event of
a thread should happen after the fork event that starts the
thread; (3) A join event for a thread should happen after the
last event of the thread.

Lock-mutual-exclusion constraints (�
lock

). The �
lock

constraint ensures that events guarded by the same lock
are mutually exclusive. It is constructed over the ordering of
the lock and unlock events. More specifically, for each lock,
MCR extracts all the lock/unlock pairs of events following the
program order and constructs the following constraints for
each two pairs (l1, u1) and (l2, u2): O

u1 < O
l2 _O

u2 < O
l1 .

Data-validity constraints (�
validity

). The �
validity

con-
straint ensures that all events in any trace in MaxCausal(⌧)
are feasible. For an event e to be feasible, all events that
must-happen-before e must be feasible, and every read event
that e depends on (excluding e itself) should read the same
value as it reads in ⌧ . Let �

e

denote the set of events that
must-happen-before an event e, and consider a read event
r=read(t,x,v) in �

e

on a memory address x with value v by
thread t. Let W x denote the set of all writes to x, and W x

v

the set of writes to x with value v, the �
validity

constraint for
e is encoded as

V
r2�

e

�
value

(r, v), where �
value

(r, v) is the

state constraint that ensures r to read a value v:

�
value

(r, v) ⌘
W

w2W

x

v

(�
validity

(w) ^O
w

< O
r

V
w 6=w

02W

x

(O
w

0 < O
w

_O
r

< O
w

0))

New state constraints (�
state

). The key idea for MCR to
eliminate redundant executions is enforcing at least one read
event in each explored execution to read a new value so that
no two executions reach the same state. MCR enumerates
each read event in ⌧ on the set of all values by the writes on
the same memory address. For each value that is different

Initially: x = y = 0

Thread1: Thread2:

1: x = 1
2: a = y

3: y = 1
4: b = x

assert (a == 1 || b == 1)

Initially: x = y = 0

Thread1: Thread2:

1: x = 1
2: y = 1

3: if (y == 1)
4: if (x == 0)

 5: ERROR

(a) A TSO example Initially: x = y = 0

Thread1: Thread2:

1: x = 1
2: a = y

3: y = 1
4: b = x

assert (a == 1 || b == 1)

Initially: x = y = 0

Thread1: Thread2:

1: x = 1
2: y = 1

3: if (y == 1)
4: if (x == 0)

 5: ERROR

(b) A PSO example

Figure 3: (a) shows a program with error under TSO, but
correct under SC; (b) shows a program with error under PSO,
but correct under SC and TSO.

from what it reads in ⌧ , a new state constraint is generated to
ensure the read event to read the new value. Consider a read
r=read(t,x,v) on x with value v, and a value v0 6= v written
by any write on x, �

state

is written as �
value

(r, v0). Since
all such state constraints are generated, MCR ensures that
no non-equivalent interleaving is missed. Hence, the entire
state-space will be covered systematically by MCR.

2.4 Example
We use the example in Figure 3(a) to illustrate MCR. The
program has 6 different executions (3 are redundant) under
SC, but 24 different executions under TSO (20 are redundant).
MCR is able to explore all the state-space under SC via only
3 executions, but it fails to expose the assertion violation that
is only possible under TSO.

Let e
i

denote the event at the line number i. Given a
trace ⌧ = he1, · · · , eni, MCR uses n integer variables
hO1, · · · , On

i to denote the order in which the events happen
in a certain execution. The value of O

i

represents the position
of e

i

in a trace. If O
i

< O
j

, then e
i

will be executed before
e
j

in the generated interleaving.
Suppose in the initial execution, MCR obtains the trace

⌧0 = he1, e2, e3, e4i under SC, and the program reaches
the state (a=0,b=1). MCR constructs the MHB constraints
�

mhb

= O1 < O2 ^O3 < O4. Since the trace contains two
reads, e2 (R(y)=0) and e4 (R(x)=1), to generate new seed
interleavings, MCR tries to enforce each of the two reads to
read a different value in future executions. For example, for
e2, it adds the new state constraint �

value

= O3 < O2

to enforce R(y) to read value 1 (written by e3) instead
of 0. By solving this constraint conjoined with �

mhb

, the
SMT solver will return a solution such as {O1 = 1, O2 =
3, O3 = 2}. From this solution, MCR will generate a new
seed interleaving e1-e3-e2 because O1 < O3 < O2. By
re-executing the program following this seed interleaving,
MCR obtains a new trace ⌧1 = he1, e3, e2, e4i and reaches
a new state (a=1,b=1). Then the exploration along this seed
interleaving is finished because there is no new value that can
be read by any read event in ⌧1. Similarly, the read event e4 in
⌧0 generates a new seed interleaving e3-e4, which produces
a new trace ⌧2 = he3, e4, e1, e2i that reaches a new state
(a=1,b=0).

An	Example

14

Init: x=y=0
thread 1:
x = 1 //a1
a = y //a2

thread 2:
y = 1 //b1
b = x //b2

S0:	a1-a2-b1-b2 (a=0,	b=1)

Ob1 <	Oa2

Oa1 <	Oa2

S1:	a1- b1	- a2

Ob2 <	Oa1

Ob1 <	Ob2

S2:	b1	- b2
(a=1,	b=1) (a=1,	b=0)

3	executions

Limitation	of	MCR

15

The	original	MCR	only	checks	the	program	
under	sequential	consistency.

Limitation	of	MCR

16

thread 1:
x = 1 //a1
a = y //a2

thread 2:
y = 1 //b1
b = x //b2

Init: x=y=0

Assert (a==1 || b==1)

Contributions

17

• Extend	MCR	for	TSO	and	PSO
• Present	a	new	replay	algorithm
• Evaluation	on	various	applications
• Explore	5x	– 10x	fewer	executions	than	DPOR

Two	Challenges

18

1. Relax	the	happens-before	constraints	

2. Replay	a	schedule	out	of	the	program	
order

Happens-before	Relaxation

19

Relax	the	happens-before	relation	of	the	write-read	and	write-
write	events	by	the	same	thread:

ɸhb =

ɸrr r1 ≺ r2, iff r1,r2 ∈ Reads

ɸr-w r ≺ w, iff r ∈ Reads && w ∈ Writes
ɸaddr e1 ≺ e2, iff addr(e1) = addr(e2)

ɸw-w w1 ≺ w2, iff w1,w2 ∈ Writes

Example

20

Init: x=y=0
thread 1:
x = 1 //a1
a = y //a2

thread 2:
y = 1 //b1
b = x //b2

Under	SC:
Oa1 <	Oa2
Ob1 <	Ob2		

Under	TSO/PSO
Oa1,	Oa2,	Ob1,	Ob2

Replay

21

Expecting:	b2	– a1	– a2	– b1	

thread 1:
x = 1 //a1
a = y //a2

thread 2:
y = 1 //b1
b = x //b2

T2	– T1	– T1	– T2

Actual:							b1	– a1	– a2	– b2	

Can’t	decide	
whether	to	

buffer

Replay

22

Interleaving :	a	sequence	of	schedule	choices,	
with	each	schedule	choice	c(tid,	addr).

thread executes an operation on a shared location, it is blocked
first, and then the scheduler queries the seed interleaving
to decide which thread to execute next. For SC, since the
global order in the generated seed interleaving is consistent
with the program order, this replay strategy guarantees that
the operation chosen by the scheduler exactly matches with
the event in the interleaving. However, under TSO/PSO,
because operations can be executed out of the program order,
this simple global-ordering based replay approach no longer
works. To realize the reordering, we rely on a store buffer (a
FIFO queue) assigned to each thread to delay the execution
of a store. The difficulty comes from the non-determinism of
the update operation (recall Section 3) because it can happen
any time at any point of the execution to flush the store buffer.
To deterministically enforce a seed TSO/PSO interleaving,
there are two key issues to be addressed: (1) when to buffer
a write; and (2) when to flush the buffered write to the main
memory.

To solve this problem, we first extend the original abstrac-
tion of the SC interleaving in MCR by adding the memory
location information – addr – to each operation. The new
abstraction of interleaving is defined as follows:

Definition 1. An interleaving is a sequence of schedule
choices, with each schedule choice c(tid, addr) consisting
of a thread ID, tid, and a memory location, addr, that is
expected to be accessed by the corresponding operation.

The key idea of our TSO and PSO replay algorithms is
to use the accessed memory location to decide whether to
buffer a write by checking it against the information in the
seed interleaving.

Store Buffering/Updating. Before performing a store op-
eration, we first check if the memory location accessed by
this operation is the same as the one in the seed interleaving.
If yes, we can flush the store to the main memory. Other-
wise, we buffer the store in the store buffer (a FIFO Queue).
At this point, we do not update the schedule choice since
the operation has not been executed from the view of the
interleaving. Later, when the address by the event in the in-
terleaving matches with the one buffered in the FIFO queue,
we flush the value to the main memory and also update the
schedule choice to the next one.

Fence. The operational model of TSO and PSO requires
that before performing a fence operation, all the buffered
stores in the store buffer should be flushed into the memory.
However, in our approach, the re-execution of a program is
controlled by a given interleaving, and our replay algorithm
guarantees that when the scheduler meets a fence operation,
the buffer must be empty. The reason is that all events that
occur before a fence should happen before the fence and we
have already constrained all such events to happen before the
fence in the formula (recall Section 4.1). Therefore, when
the scheduler is about to execute a fence of an interleaving,
all the events before this fence have already been executed

t1:
x = 1;

a = y;

t2:
y = 1;

b = x;

Schedule Choice:

addr
conflicts

buffer y=1
...

A concurrent program

addr matches, so t2:y
must correspond to W(y)

Store Buffer B2

Figure 5: An example to illustrate Theorem 1 and Theorem 2.
B2 is the store buffer associated with thread t2.

(all buffered writes have already been flushed), and thus the
buffer is empty at the moment.

Based on the new abstraction above, we can prove the
following two theorems to guide our replay algorithms and to
guarantee their correctness. Theorem 1 guides our algorithm
to buffer writes and Theorem 2 guides our algorithm to flush
the buffered writes to memory.

Theorem 1. At replay, when the program counter (PC)
points to an event, say e

i

, corresponding to the choice of
the schedule, say c

j

, if addr(e
i

) 6= addr(c
j

), then e
i

must
be a write operation and it needs to be buffered.

Proof: If e
i

is a read or a fence operation, it implies that
a later operation c

j

(later according to the program order)
is allowed to happen before a read/fence operation. This
contradicts with the TSO and PSO operational models defined
in Section 3. Hence e

i

must be a write, and a certain operation
matching with c

j

that accesses a different location should be
executed before e

i

. Therefore, e
i

must be buffered.

Theorem 2. When considering a schedule choice c
j

in the
seed interleaving, if addr(c

j

) equals to the memory location
of the write at the head of the store buffer, then c

j

must
correspond to that buffered write.

Proof: By contradiction. Suppose that c
j

is a read or a
fence. Since there is a write w in the store buffer by the
same thread that accesses the same address as c

j

does, it
means that the read (or fence) is allowed to happen before
the write w which is before it. This again contradicts with the
operational models of TSO and PSO. Therefore, c

j

must be a
write. Similarly, c

j

cannot correspond to any other write in
the store buffer, otherwise c

j

would be allowed to be executed
before its preceding writes. Hence, c

j

must correspond to the
buffered write w and w should be flushed.

Example. Figure 5 illustrates the two theorems above.
When considering the schedule choice t2 : x, the instruction
y = 1 is to be executed. However, their addresses do not
match, which implies that the write y = 1 should be buffered

Case	1:	when	addr(e)	≠	
addr(c),	buffer e

Case	2:	when	addr(c)	=
addr(w),	w is buffered,	
update	w

Constraints	Construction

23

SC/TSO
O1	<	O2 <	O3 <	O4 <	O5 <	O6

O7 <	O𝟏𝟖 <	O
𝟐
𝟖

PSO
O1	<	O6
O2 <	O4
O3 <	O5

O7 <	O𝟏𝟖 <	O
𝟐
𝟖

A	feasible	schedule:	1-2-3-6-7-8-4-5	that	can	trigger	the	error!
PSO:	O1=1	,	O2=2,	O3=3,	O4=7,	O5=8,	O6=4,	O7=5,	O𝟏

𝟖=6

 z = 0
 x = 0
 y = 0
 x = 2
 y = 3
 z = 1

1
2
3
4
5
6

if (z==1)
 if (x+1 != y)

7
8
9

Initially x=1, y=2, z=0
Thread 1: Thread 2:

ERROR

thread2.start()

thread2.join()

Execution:	1-2-3-4-5-6-7-8-8-9

Replay

24

thread	1:
1. z=0		
2. x=0
3. y=0
4. x=1
5. y=2
6. z=1

thread	2:
7.		if	(z>0)
8.				assert(x+1	==	y)

T𝒛𝟏-T
𝒙
𝟏-T

𝒚
𝟏-T

𝒛
𝟏-T

𝒛
𝟐-T

𝒙
𝟐-T

𝒙
𝟏-T

𝒚
𝟏

Scheduler

1:z=0
2:x=0
3:y=0

Addr doesn’t	match

x=1

Addr doesn’t	match 6:z=1
7:z>0

y=2

Replay:		1	- 2	- 3	- 6	- 7	- 8 - 4	- 5

8:x+1
4:x=1

Evaluation

• Java	implementation	using	ASM	and	Z3
•Compared	with	rInspect [Zhang	et	al.,	PLDI’15]	and	
SATCheck [Demsky and	Lam,	OOPSLA’15]

Ø States	pace	exploration	effectiveness
Ø Efficiency	of	finding	errors

•A	collection	of	benchmarks	with	known	errors

25

Benchmarks

Table 2: Benchmarks

Program LoC #Thrd #Evt Description
Dekker 119 3 56 Two critical sections with 3 shared variables.
Lamport 162 3 40 Two critical sections with 4 variables.
bakery 119 3 27 n critical sections using 2n shared variables. We take n=2.
Peterson 94 3 72 Two critical sections with 3 variables
StackUnsafe 135 3 34 Unsafe operations on a stack by two threads, which cause the stack underflow.
RVExample 79 3 32 An example from original MCR [21], which contains a very tricky error
Example 73 2 44 The example program from Figure 6 with loop number from 1 to 4.
Account 373 5 51 Concurrent account deposits and withdrawals suffering from atomicity violations.
Airline 136 6 67 A race condition causing the tickets oversold.
Allocation 348 3 125 An atomicity violation causing the same block allocated or freed twice.
PingPong 388 6 44 The player is set to null by one thread and dereferenced by another throwing NPE.
StringBuf 1339 3 70 An atomicity violation in Java StringBuffer causing StringIndexOutOfBoundsException.
Weblech 35K 3 2045 A tool for downloading websites and enumerating standard web-browser behavior.

reads/writes to access the shared memory, it needs sophis-
ticated instrumentations to identify operations on shared
variables, which is done manually in SATCheck. For compar-
ison, we carefully transformed the seven benchmarks to the
input format of SATCheck.

For the third question, we tested our approach on six real
programs. We evaluated our approach on these programs
under TSO and PSO, in addition to SC which is supported in
the original MCR. Because none of the other two tools can
support complex real applications and both of them work for
C/C++ programs, we were not able to compare our results
with the other approaches.

All experiments were conducted on a MacBook with 2.6
GHz Intel Core i5 processor, 8 GB DDR3 memory and JDK
1.7. All results were averaged over three runs.

6.2 Results of State Space Exploration
Table 3 summarizes the results of state-space exploration
for the first seven benchmarks in Table 2. The first three
columns report the results of DPOR, the three columns in the
middle report the results of our approach, and the last three
columns report the comparison between the two approaches.
On average, MCR requires 5X to 10X (as much as 30X) fewer
executions than DPOR to explore the entire state-space. For
RVExample, which contains a very tricky error with loops,
DPOR takes almost 2,000 executions, while MCR only takes
57 executions under SC. Moreover, the rInspect tool cannot
finish under TSO and PSO by throwing a socket exception.
For our Example in Figure 1, MCR takes 2,767 executions
under SC and TSO, and 8,420 executions under PSO. Because
the tools are implemented in different languages, it is difficult
to compare the runtime speed between them. We hence
focused on evaluating the effectiveness of our approach
in reducing the number of executions but not the runtime
performance. In the original MCR paper [21], it has shown
that MCR outperforms DPOR in terms of runtime speed.

6.3 Results of Bug Finding
Table 4 summarizes the results of bug finding for the first
seven benchmarks in Table 2. The data in the table presents
the number of executions taken to find the bug. Overall,
our approach takes much fewer executions than the other
two approaches to find the errors. Moreover, our technique
is able to find all the known errors and injected assertion
violations, whereas DPOR fails to find the errors in Example
and RVExample by throwing exceptions, and SATCheck
fails to find those errors by either throwing segmentation
faults or repeating the same execution forever. For example,
for Dekker, Peterson and RVExample, the SATCheck tool
gets stuck with the same execution and runs forever. Due
to the implementation problem of the SATCheck tool and
complexity of the transformation of the benchmarks, at the
moment, it is difficult to make direct and fair comparisons
between SATCheck and our technique. For RVExample,
DPOR takes 301 executions to find that tricky error, while
our approach takes only 53 executions.

6.4 Results on Real Programs
Table 5 reports the number of executions taken by MCR to
explore the state-space of the six real programs under SC,
TSO and PSO as well as the number of data races found
during the exploration. MCR stops exploration when all state-
space of the program has been explored or it triggers a bug in
the program that leads to a runtime exception. Overall, MCR
scales well to these real programs, and it is highly effective
in exploring the state-space and finding bugs including data
races in these programs. For example, for Account, MCR
took only 7 executions to explore the whole state-space
under SC, and 9, 11 under TSO and PSO, and found 3 data
races. For Weblech, which contains over 2K critical events,
MCR finished after explorating 185, 106 and 113 executions,
respectively, under SC, TSO and PSO, and found 6 data races.
The reason that MCR explored fewer executions under TSO
and PSO than that under SC is that bugs in Weblech that

26

• 7	popular	small	benchmarks
• 6	real	Java	applications	including	a	large	one	weblech

State	Space	Exploration

27

Program
DPOR	(rInspect) MCR	(our	approach) #Executions	Reduction	

SC TSO PSO SC TSO PSO SC TSO PSO
Dekker 248 252 508 62 98 155 4.0X 2.6X 3.3X
Lamport 128 208 2672 14 91 102 9.1X 2.3X 29.4X
Bakery 350 1164 2040 77 158 165 4.5X 7.1X 12.4X
Peterson 36 95 120 13 18 19 2.8X 5.3X 6.3X

StackUnsafe 252 252 252 29 46 108 8.7X 5.5X 2.3X
RVExample 1959 - - 57 64 70 34.4X - -

Example
(N=1	to	4)

4 4 - 2 2 10 2.0X 2.0X -
105 105 - 43 43 89 2.4X 2.4X -
4282 4282 - 296 296 819 14.5X 14.5X -
14840 14840 - 2767 2767 8420 5.4X 5.4X -

Avg. 435 394 1118 42 79 103 10.4X 5.0X 10.9X

State	Space	Exploration

28

Program
DPOR	(rInspect) MCR	(our	approach) #Executions	Reduction	

SC TSO PSO SC TSO PSO SC TSO PSO
Dekker 248 252 508 62 98 155 4.0X 2.6X 3.3X
Lamport 128 208 2672 14 91 102 9.1X 2.3X 29.4X
Bakery 350 1164 2040 77 158 165 4.5X 7.1X 12.4X
Peterson 36 95 120 13 18 19 2.8X 5.3X 6.3X

StackUnsafe 252 252 252 29 46 108 8.7X 5.5X 2.3X
RVExample 1959 - - 57 64 70 34.4X - -

Example
(N=1	to	4)

4 4 - 2 2 10 2.0X 2.0X -
105 105 - 43 43 89 2.4X 2.4X -
4282 4282 - 296 296 819 14.5X 14.5X -
14840 14840 - 2767 2767 8420 5.4X 5.4X -

Avg. 435 394 1118 42 79 103 10.4X 5.0X 10.9X

Our	approach	explores	5x	– 10x	fewer	
executions	than	DPOR.

Finding	Bugs

29

Program
DPOR SATCheck MCR (our approach)

SC TSO PSO SC TSO SC TSO PSO
Dekker 22 28 29 32! 68735! 10 4 5

Lamport 6 8 24 - - 2 2 3
Bakery 12 15 15 - - 8 8 15

Peterson 4 5 6 19* 34282! 7 2 3
StackUnsafe 6 6 6 - - 2 2 2
RVExample 301 - - 60564! 70365! 53 54 39

Example 14840* 14840* - 1* 1* 2767* 2767* 3

Avg. 10 12 16 - - 6 4 6
!:	repeat	the	same	execution
*:	finish	without	finding	the	bug

Finding	Bugs

30

Program
DPOR SATCheck MCR (our approach)

SC TSO PSO SC TSO SC TSO PSO
Dekker 22 28 29 32! 68735! 10 4 5

Lamport 6 8 24 - - 2 2 3
Bakery 12 15 15 - - 8 8 15

Peterson 4 5 6 19* 34282! 7 2 3
StackUnsafe 6 6 6 - - 2 2 2
RVExample 301 - - 60564! 70365! 53 54 39

Example 14840* 14840* - 1* 1* 2767* 2767* 3

Avg. 10 12 16 - - 6 4 6

Our	approach	needs	2X- 3X	fewer	
executions	than	DPOR	and	SATCheck

to	find	the	bugs

!:	repeat	the	same	execution
*:	finish	without	finding	the	bug

Conclusion

1.MCR	for	TSO	and	PSO
•Relax	the	happens-before	constraints
•Faithfully	replay	the	TSO/PSO	interleavings

2. Explore	5X	– 10X	fewer	executions	than	DPOR	
3. Take	fewer	executions	to	find	the	bugs	

31

Acknowledgement

32

Brian	Demsky Patrick	Lam	
University	of	California,	Irvine University	of	Waterloo

Thank	you	
&

Questions?

33

